Объяснение:
1) Условие равновесия капельки (см. рисунок):
\displaystyle \vec{F_k}+m\vec{g}=0
F
k
+m
g
=0
Или:
\displaystyle F_k=mgF
k
=mg
Таким образом, Кулоновская сила равна силе тяжести, действующей на капельку:
\displaystyle F_k=3.2*10^{-6}*10=3.2*10^{-5}F
k
=3.2∗10
−6
∗10=3.2∗10
−5
Н или 32 мкН
Очевидно, чтобы капелька была в равновесии, верхняя пластина должна быть заряжена положительно, а нижняя - отрицательно.
2) Дано:
F=56 мН;
V=4 см³;
ρ=0,6 г/см³;
Найти: Т
СИ: F=56*10⁻³ Н; V=4*10⁻⁶ м³; ρ=600 кг/м³
Масса капельки:
\displaystyle m=\rho V=600*4*10^{-6}=2.4*10^{-3}m=ρV=600∗4∗10
−6
=2.4∗10
−3
кг
Сила тяжести, действующая на капельку:
\displaystyle F_T=mg=2.4*10^{-3}*10=24*10^{-3}F
T
=mg=2.4∗10
−3
∗10=24∗10
−3
Н или 24 мН
Ясно, что Кулоновская сила должна быть направлена вниз (иначе нить не будет натянута), сила натяжения нити:
\displaystyle T=F+F_T=56+24=80T=F+F
T
=56+24=80 мН
ответ: 80 мН.
Как правильно сказали:
"формула для нахождения давления р = F/S где F - сила, с которой брусок будет действовать на стол (а это будет вес тела, равный m × g), a S - площадь соприкосновения со столом"
После того как положили фанеру - площадь соприкосновения увеличилась, следовательно давление уменьшилось.
(Есть варианты, что брусок был очень большой и длинный, тогда фанера почти ничего не изменила, или если фанера очень толстая, следовательно её вес пришлось бы учитывать, но это по идее качественная задача, следовательно их рассматривать не стоит)
Подставляем значения и получаем