ответ:V (частота) = 7.5 *10^(15) Гц
U(максимальная скорость электрона) = 3000*1000 м/с
Me(масса электрона) = 9.11 *10^(-31) кг.
h(постоянная Планка) = 6.62 * 10^(-34)Дж*с
A(работа выхода) - ?
Объяснение:
Запишем основное уравнение фотоэффекта hV = A + Ek(максимальная кинетическая энергия выхода электрона)
Ek = (Me * U^(2)) / 2, значит уравнение приобретает вид hV = A + (Me * U^(2)) / 2
A = hV - (Me * U^(2)) / 2 = 6.62 * 10^(-34) * 7.5 *10^(15) - (9.11 * 10^(-31) * (3 * 10^(6))^(2)/2 = 49.65 * 10^(-19) - 40.995 *10^(-19) = 8.655 * 10^(-19) (Дж)
Все знают самого быстрого человека на Земле — его зовут Флэш. Но если вернуться в реальность и представить, что люди могут бегать на таких невероятных скоростях, с какой скоростью нужно бежать человеку, чтобы его охватило пламя?
1. Атмосферное давление
На высоких скоростях большую часть теплоты производит не трение с воздухом, а давление. Как и в случае с кораблем, плывущим по поверхности воды, быстро движущееся тело точно так же проталкивает «волну» воздуха. Молекулам воздуха некуда деться и они врезаются в тело, а затем другие молекулы врезаются в них и в итоге — нагреваются.
2. Сверхзвук
Если вы все же решились провести этот чудесный эксперимент, то самым лучшим местом будет максимально длинное побережье моря. Плотность воздуха на уровне моря намного выше, следовательно там больше молекул воздуха, которые можно нагреть. Обычно, тела кремируют при температуре 1500°С и исследования NASA показывают, что для достижения такой температуры, нужно бежать на скорости в 5 Махов (6000 км/ч).
3. Оденьтесь потеплее
Однако, 1500°С — это температура, при которой пламя охватит ваше тело, в то время как ваша одежда загорится задолго до достижения такой температуры. Например, изделия из нейлона загорятся при температуре 500°С, а изделиям из шерсти потребуется всего 230°С. Это означает, что при желании вы можете загореться даже на скорости 2500 км/ч. Разве это не удивительно?
Пусть искомый заряд qx размещен на расстоянии r2 от заряда q2, тогда расстояние заряда qx до заряда q1 будет r1 = d – r2.
Для того, чтобы заряд qx был в равновесии, сила F1, действующая на него co стороны заряда q1, должна быть равна равна силе F2, действующей на него co стороны заряда q2.
По закону Кулона: (1/(4*π*ε*εo))*(q1*qx)/(r1^2) = (1/(4*π*ε*εo))*(q2*qx)/(r2^2).
Так как q2 = 2*q1 и (d – r2) = r1, то 1/(d – r2)^2 = 2/(r2^2).
(d – r2) = r2/V2
d = r2*(1 + 1/V2).
r2 = d/(1 + 1/V2) = 0.15/(1 + 1/V2) = 0.09м.
Итак r2 = 0,09м.
Условием равновесия системы будет равенство нулю суммы сил, действующих на каждый из зарядов: F1= F2, F21 = F1, F2 = F21, где F1 – сила взаимодействия зарядов qx и q1; F1 – сила взаи-модействия зарядов qx и q2; F21 – сила взаимодействия зарядов q1 и q2.
F21 = F1. Запишем согласно закону Кулона:
(1/(4*π*ε*εo))*(q1*q2)/(d^2) = (1/(4*π*ε*εo))*(q2*qx)/(r2^2).
Избавимся от одинаковых сомножителей: q1/(d^2) = qx/(r2^2).
Разрешим относительно qx = (q1*r2^2)/d^2 = 4нКл*0,0081м^2/(4*0.225м^2) = 3.6нКл.
ответ: Отрицательный заряд величиной 3.6нКл следует поместить на расстоянии 0.09м от заряда q2, чтобы система находилась в равновесии. Иначе положительно заряженные заряды "разбегутся". Равновесие будет неустойчивым