Объяснение:
Вещество находящееся в жидком агрегатном состоянии ( занимающем промежуточное положение между твёрдым и газообразным агрегатном состояниями ) называется жидкостью. Жидкость в отличие от твердых тел ; газов ( которые сохраняют объем и форму ; и не сохраняют объем и форму соответственно ) сохраняет объем но не сохраняет форму . Молекулы в жидкости находятся на довольно небольшом расстоянии относительно газов и на довольно большом расстоянии относительно твёрдых . Как мы уже раньше говорили жидкость занимающает промежуточное положение меж температурном промежуткеду твёрдым и газообразным агрегатном состояниями , поэтому тело может находиться в жидком агрегатном состоянии лишь в определённом температурном промежутке ( ведь если сильно нагреть тело оно из жидкости превратиться в газ , а если сильно остудить то примет твёрдое агрегатное состояние ( хотя в этом случае много чего зависит не только от температуры , а ещё и от давления ) )
Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
1 см = 2 клетки ⇒⇒⇒ 200 Н = 4 кл , 300 Н = 6 кл.