V=?; T=? (V-линейная скорость; Т- период вращения)
Радиус колеса переводим в метры по международной системе СИ
rколеса=40см/100 (т.к. в метре 100см)=0,4м
Для определения линейной скорости с которой едет велосипедист надо определить угловую скорость вращения колеса, определяется по формуле
w(греч. omega)=(пи*n)/30 или w(греч. omega)=(2*пи*n)/60 (что первое, что второе одно и тоже- результат одинаков)
Из условия n=120об/мин
w(греч. omega)=(3.14*120)/30=12.56(1/c)[измерение 1 в минус первой степени]
Определим линейную скорость велосипедиста
V=w*rколеса=12.56(1/c)*0.4м=5,024 м/с
Если км/ч, то результат умножить на 1000 и поделить на 360 (1000м=1км; 360с=1ч), получим V=(w*r*1000)/360=(приблизительно)13.96км/ч
Определение периода (чесно, подсмотрел)
частота вращения v(греч.НЮ)=n/t, где n=nколеса, а t=1минута=60секунд(начальные данные в условии задачи), в принципе, что частота вращения, что количество оборотов- одно и тоже
Тогда НЮ=120/1минуту=120об/мин; Период Т=1/120=1/2секунд(то есть 2 оборота за секунду )
скорость велосипедиста V=13.96км/ч=5,024 м/с;
период вращения колеса 2 оборота в секунду, ну или один оборот за половину секунды
Дано: v=0.5 м/с t₁=1.5 мин=90 с а=0,2 м/с² v₁=5 м/с Найти: t Решение: За полторы минуты юноша отошел от станции на расстояние Δs Δs=vt₁=0.5*90=45 (м) Если он нагнал поезд, то он пробежал путь s₁, а поезд путь s₂. Очевидно, что s₁-Δs=s₂ По формуле пути при равноускоренном движении s₂=at²/2 s₁-Δs=at²/2 v₁t-Δs=at²/2 at²/2-v₁t+Δs=0 Подставляя данные, получаем квадратное уравнение 0,2t²/2-5t+45=0 t²-50t+450=0 D=50²-4*450=700 √D≈26.5 t₁=(50-26.5)/2≈11.8 (c) Второе значение можем не находить, т.к. уже ясно, что он догонит поезд через 11,8 с ответ: да, сможет.
rколеса=40см; nколеса=120 об/мин
V=?; T=? (V-линейная скорость; Т- период вращения)
Радиус колеса переводим в метры по международной системе СИ
rколеса=40см/100 (т.к. в метре 100см)=0,4м
Для определения линейной скорости с которой едет велосипедист надо определить угловую скорость вращения колеса, определяется по формуле
w(греч. omega)=(пи*n)/30 или w(греч. omega)=(2*пи*n)/60 (что первое, что второе одно и тоже- результат одинаков)
Из условия n=120об/мин
w(греч. omega)=(3.14*120)/30=12.56(1/c)[измерение 1 в минус первой степени]
Определим линейную скорость велосипедиста
V=w*rколеса=12.56(1/c)*0.4м=5,024 м/с
Если км/ч, то результат умножить на 1000 и поделить на 360 (1000м=1км; 360с=1ч), получим V=(w*r*1000)/360=(приблизительно)13.96км/ч
Определение периода (чесно, подсмотрел)
частота вращения v(греч.НЮ)=n/t, где n=nколеса, а t=1минута=60секунд(начальные данные в условии задачи), в принципе, что частота вращения, что количество оборотов- одно и тоже
Тогда НЮ=120/1минуту=120об/мин; Период Т=1/120=1/2секунд(то есть 2 оборота за секунду )
скорость велосипедиста V=13.96км/ч=5,024 м/с;
период вращения колеса 2 оборота в секунду, ну или один оборот за половину секунды