Объяснение:Два пластилиновых шарика массами m1= 4,4 кг и m2= 2 кг движутся по гладкой горизонтальной поверхности вдоль одной прямой навстречу друг другу со скоростями v1= 8 м/с и v2= 5 м/с соответственно. Через некоторое время шарики сталкиваются, склеиваются и далее начинают двигаться как одно тело. Определи скорость шариков после склеивания. (ответы округли до десятых.) Шаг 1. Найди импульс первого шарика до взаимодействия: p1= 4,4*8 кг·м/с=35,2кг·м/с. Шаг 2. Найди импульс второго шарика до взаимодействия: p2= 2*5 кг·м/с=10кг·м/с. Шаг 3. Найди суммарный импульс двух шариков до взаимодействия, учитывая, что шарики движутся навстречу друг другу: p= 35,2кг·м/с-10кг·м/с=25,2 кг·м/с.
Шаг 4. Найди массу тела, которое получается из слипшихся шариков: m= 6,4кг. Шаг 5. Обозначив скорость тела после слипания шариков как v, запиши импульс P тела после взаимодействия: (m1+m2)V=p1⋅p2 Шаг 6. Поскольку два шарика являются замкнутой системой, то для них выполняется закон сохранения импульса: импульс системы до взаимодействия равен импульсу системы после взаимодействия. Составь уравнение согласно закону сохранения импульса: (m1+m2)V=p1⋅p2 — и реши его относительно v с точностью до десятых: v = 3,9м/с.
Наиболее используемые устройства - жидкостные термометры (Рис. 1 слева). В них жидкость залита в колбу, а шкалой является тонкая трубка. Если для измерения низких температур используют спиртовый термометр (до -70°С), то для более высоких - ртутные. Недостатком таких термометров является низкая прочность стеклянных колб.
В быту также используются и механические термометры. (Рис. 1 справа) В их основе лежит биметаллическая спираль на конце которой закреплена стрелка. Здесь использовано свойство, что у различных материалов разные коэффициенты линейного расширения. Изготовленная сразу из двух слоев металлов при нагревании начинает изгибаться.
Ещё шире биметаллические пластины используются в устройствах для регулировки (поддержания постоянной) температуры. Это регуляторы температуры, например, в электроутюгах. Изгибаясь биметаллическая пластина соединяет контакты электрической цепи. Такой же эффект использован в автоматах тока в бытовой электросети. (рис. 2 слева). Проходящий по цепи ток нагревает биметаллическую пластину установленную в механизм с пружиной, который отключает подачу электричества в цепь. Включить такой автомат можно только после его охлаждения.
И, конечно, все мы постоянно пользуемся холодильниками и, иногда, электропечами. В них используются сильфонные механизмы. (Рис. 2 -справа). Запаянная длинная трубка с жидкостью соединена с гибкой коробкой (сильфоном), изменение размеров которой и приводит к замыканию электроконтактов.
Особая проблема температурного расширения метала ощущается на железнодорожных путях. (Рис. 3). Но вместо устройства стыков примерно через 25 м применяют в местах соединений рельсов длиной 1000 и более метров конструктивное решение - температурный компенсатор.
В машиностроении температурное расширение применяется при горячем прессовании. Например, при соединении колесной пары для поездов. Отверстие в ободе колеса делается незначительно, но меньше диаметра оси. Затем обод нагревают до высокой температуры и быстро прессуют в него "холодную" ось. Соединение получается очень надёжным.
Объяснение:
Na=6,02*10^23 (моль^-1)
v=10^27/6,02*10^23=1661(моль)
ответ (г)