М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ffhddjkk
ffhddjkk
11.02.2022 22:11 •  Физика

Может ли количество степеней свободы трехатомной молекулы быть больше 6? если да то почему?

👇
Ответ:
localhend
localhend
11.02.2022
3 поступательных, 3 вращательных итого 6
Разве, что рассматривать саму молекулу как осциллятор, когда её атомы колеблются относительно самой молекулы
4,8(57 оценок)
Открыть все ответы
Ответ:
В любом положениии жука, по графику, мы можем найти соответствующую его положению скорость. Пусть расстояние между

делениями равно    x \ ,    тогда мы можем выразить время, которое тратит жук на прохождение расстояния между

каждой парой делений:

t_{01} = \frac{x}{3} \ ;

t_{12} = \frac{x}{4} \ ;

t_{23} = \frac{x}{1} \ ;

t_{34} = \frac{x}{4} \ ;

t_{45} = \frac{x}{2} \ ;

t_{56} = \frac{x}{1} \ ;

t_{67} = \frac{x}{3} \ ;

t_{78} = \frac{x}{1} \ ;

t_{89} = \frac{x}{3} \ ;

Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.

Значит полное время, которое он затратил на прохождение линейки равно:

t = t_{01} + t_{12} + 1.5 + t_{23} + t_{34} + 1.5 + t_{45} + t_{56} + 1.5 + t_{67} + t_{78} + 1.5 + t_{89} = \\\\ = \\\frac{x}{3} + \frac{x}{4} + 1.5 + \frac{x}{1} + \frac{x}{4} + 1.5 + \frac{x}{2} + \frac{x}{1} + 1.5 + \frac{x}{3} + \frac\\{x}{1} + 1.5 + \frac{x}{3} = \\\\ = ( 1.5 + 1.5 + 1.5 + 1.5 ) + ( \frac{x}{3} + \frac{x}{3} + \frac{x}{3} ) + ( \frac{x}\\{4} + \frac{x}{4} + \frac{x}{2} ) + x + x + x = \\\\ = 4 \cdot 1.5 + 3 \cdot \frac{x}{3} + ( \frac{x}{2} + \frac{x}{2} ) + \\3x = 6 + x + x + 3x = 6 + 5x \ ;

t = 6 + 5x \ ;

Поскольку нам дана средняя скорость,
то мы можем определить длину L линейки Глюка, как:

L = t \cdot v_{cp} = ( 6 + 5x ) \cdot 1 = 6 + 5x \ ;

Но с другой стороны, длина линейки Глюка, очевидно, равна    9x \ ,    поскольку мы изначальнго определили    

x \ ,    как цену деления линейки Глюка. Стало быть:

L = 6 + 5x = 9x \ ;

6 = 4x \ ;

x = 1.5   см

ответ: 1.5 см.

Экспериментатор глюк сконструировал необычную линейку. он взял плоский кусок деревянной доски и нанё
Экспериментатор глюк сконструировал необычную линейку. он взял плоский кусок деревянной доски и нанё
4,4(21 оценок)
Ответ:
magiclotas
magiclotas
11.02.2022

Скорость тела \vec{v} можно представить в виде векторной суммы проекций:

\vec{v}=\vec{v_x}+\vec{v_y}

В частности для начальной скорости:

\vec{v_0}=\vec{v_{0x}}+\vec{v_{0y}}

Модули проекций определяются соотношениями:

v_{0x}=v_0\cos\alpha\\v_{0y}=v_0\sin\alpha

Движение по горизонтали является равномерным, то есть проекция начальной скорости на ось х не изменяется с течением времени.

s_x=v_{0x}t

Подставляя соотношение для проекции, получим:

s_x=v_0t\cos\alpha

Подставляем значения:

s_x=20\cdot2\cdot\cos30^\circ=20\cdot2\cdot\dfrac{\sqrt{3}}{2}=20\sqrt{3}\ (\mathrm{m})

Движение по вертикали является равнопеременным. Проекция начальной скорости на ось y меняется с течением времени вследствие ускорения свободного падения.

s_y=\left|v_{0y}t-\dfrac{gt^2}{2}\right|

Подставляя соотношение для проекции, получим:

s_y=\left|v_{0}t\sin\alpha-\dfrac{gt^2}{2}\right|\\

Подставляем значения:

s_y=\left|20\cdot2\cdot\sin30^\circ-\dfrac{10\cdot2^2}{2}\right|=\left|20\cdot2\cdot\dfrac{1}{2}-\dfrac{10\cdot2^2}{2}\right|=0

Зная проекции перемещения, найдем само перемещение:

s=\sqrt{s_x^2+s_y^2} \\s=\sqrt{(20\sqrt{3})^2+0^2}=20\sqrt{3}\approx34.6\ (\mathrm{m})

ответ: 34.6м

4,7(66 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ