Существует 4 типа кристаллических решеток: ионные, молекулярные, атомные и металлические.
В узлах ионных кристаллических решеток находятся ионы, как можно понять из названия. Такой тип решетки характерен для солей, оксидов и некоторых гидроксидов. Например, самый яркий представитель - NaCl. Вещества подобного строения характеризуются высокой твердостью, тугоплавкостью и нелетучестью.
В молекулярных кристаллических решетках в узлах находятся молекулы. Такие решетки могут быть полярные и неполярные. Например, I2 или N2 - неполярные, а HCl или H2O - полярные. Характерны для жидких и газообразных веществ (при н.у.). Так как молекулярные взаимодействия слабые, то и кристаллические решетки эти будут нетвердые, летучие и с низкой температурой плавления. К таким решеткам относят твердую органику (сахар, глюкоза, нафталин).
В атомных кристаллических решетках в узлах находятся атомы, связанные друг с другом прочными ковалентными связями. Такая решетка характерна простым веществам неметаллам, которые при нормальных условиях находятся в твердом состоянии, например алмаз. Температура плавления у подобных веществ очень высокая, они прочные, твердые и нерастворимы в воде.
Металлические решетки характеризуются тем, что в узлах находятся атомы или ионы одного или нескольких металлов (у сплавов). Для металлических решеток характерно наличие так называемого общего электронного облака. Так как непрерывно происходит процесс перехода валентных электронов одного атома к другому с образованием иона, то можно говорить о том, что электроны свободно двигаются в объеме всего металла. Этим свойством объясняется электро- и теплопроводность металлов. Вещества такого строения ковки и пластичны.
Вообще в материаловедении для изучения кристаллических структур существует множество методов, основанных на свойствах рентгеновского излучения (дифракция, интерференция), электронографический анализ и другие. Но если вы хотите просто определить тип решетки вещества известного состава, нужно понять к какому классу веществ оно относится и какие физико-химические свойства имеет.
ответ:Залежно від властивостей і стану газу, характеру і розташування електродів, а також від прикладеної до електродів напруги виникають різні види самостійного розряду.
Тліючий розряд (рис.9.4). Тліючий розряд гається в газах при низькому тиску (в декілька десятків міліметрів ртутного стовпа і менше). Якщо розглянути трубку з тліючим розрядом, то можна побачити, що основними частинами тліючого розряду є катодний темний простір, різко віддалене від нього негативне, або тліюче свічення, яке поступово переходить в область фарадєєвського темного простору. Ці три області утворюють катодну частину розряду, за якою слідує основна світиться частина розряду, що визначає його оптичні властивості і звана позитивним стовпом.
Основну роль в підтримці тліючого розряду виконують перші дві області його катодної частини. Характерною особливістю цього типу розряду є різке падіння потенціалу поблизу катода, яке пов’язане з великою концентрацією позитивних іонів на межі I і II областей, обумовленою порівняно малою швидкістю руху іонів до катоду. У катодному темному просторі відбувається сильне прискорення електронів і позитивних іонів, що вибивають електрони з катода. У області тліючого свічення електрони створюють інтенсивну ударну іонізацію молекул газу і втрачають свою енергію. Тут утворюються позитивні іони, необхідні для підтримки розряду. Напруженість електричного поля в цій області мала. Тліюче свічення в основному викликається рекомбінацією іонів і електронів. Протяжність катодного темного простору визначається властивостями газу і матеріалу катода.