М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dina53646
dina53646
03.11.2021 21:11 •  Физика

Как будут вести себя кольца в описанном параграфе опыте, если подносить к ним и удалять южный полюс , 9 класс. правило ленцаодно из колец сплошное, а на втором сделан разрез. пластина может свободно вращаться вокруг вертикальной оси. будем поочередно вводить n полюс магнита в эти кольца. если магнит ввести в сплошное кольцо, то оно оттолкнется от магнита и пластинка повернется. введем в кольцо магнит, а затем будем выдвигать его из кольца. при удалении магнита от кольца оно, напротив, будет притягиваться и следовать за магнитом.

👇
Ответ:
николь43
николь43
03.11.2021
Это явление объясняется с правила Ленца и токов Фуко (вихревые токи). Правило Ленца: Индукционный (наведенный) ток имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшему этот ток. Вот почему при введении магнита в сплошное кольцо оно отталкивается, так как в кольце возникают токи Фуко, а как известно ток порождает магнитное поле, так вот как раз это магнитное поле и отталкивается от поля магнита, из-за разного направления. Ну а если тоже повторить с разрезанным кольцом, то оно не будет ни притягиваться, ни отталкиваться, так как возникает большое сопротивление токам Фуко, так как кольцо разомкнуто и токи там (переменные) не такие уж великие, чтобы их поле было настолько сильно для отталкивания/притягиваться от/к магнита/-у. Надеюсь вам понятно, если не ясно спрашивайте в комментарии. 
4,7(82 оценок)
Открыть все ответы
Ответ:
kris406
kris406
03.11.2021
Ещё в глубокой древности человек замечал, что воздух оказывает давление на наземные предметы, особенно во время бурь и ураганов. Он пользовался этим давлением, заставляя ветер двигать парусные суда, вращать крылья ветряных мельниц. Однако долго не удавалось доказать, что воздух имеет вес. Только в XVII веке был поставлен опыт, доказавший весомость воздуха. Поводом к этому послужило случайное обстоятельство.
В Италии в 1640 году герцог Тосканский задумал устроить фонтан на террасе своего дворца. Воду для этого фонтана должны были накачивать из соседнего озера, но вода не шла выше 32 футовм. Герцог обратился за разъяснениями к Галилею, тогда уже глубокому старцу. Великий ученый был смущен и не нашелся сразу, как объяснить это явление. И только ученик Галилея, Торричелли, после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута. Он пошел в своих исследованиях ещё дальше и в 1643 году изобрел прибор для измерения атмосферного давления — барометр
4,7(89 оценок)
Ответ:

если в каком-либо месте (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. процесс распространения колебаний в пространстве называется волной.

частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. в зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

продольная волна – это волна, в которой частицы среды колеблются вдоль направления распространения волны.

поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.

поперечные волны могут возникать лишь в среде, сопротивлением сдвигу. поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. в твердой среде возможно возникновение как продольных, так и поперечных волн.

на рисунке показано движение частиц при распространении в среде поперечной волны. номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстоянии 1/4 vt, т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. в момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. спустя четверть периода частица 1 достигнет крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. по прошествии еще четверти периода частица 1 будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица 2 достигнет крайнего верхнего положения, а частица 3 начнет смещаться вверх из положения равновесия. в момент времени, равный t, частица 1 закончит полный цикл колебания, и будет находиться в таком же состоянии движения, как и в начальный момент времени. волна к моменту времени t, пройдет путь vt и достигнет частицы 5.  

на рисунке показаны колебания частиц, положения, равновесия которых лежат на оси x. в действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц в некотором объеме. распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства.

место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом).

место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. волновые поверхности могут быть любой формы. в простейших случаях они имеют форму плоскости или сферы. соответственно волна в этих случаях называется плоской или сферической.

расстояние , на которое распространяется волна за время, равное периоду колебания частиц среды, называется длиной волны. очевидно, что:

 

где v- скорость волны, t- период колебаний. длину волны можно определить также как расстояние между ближайшими точками среды, колеблющихся с разностью фаз, равной 2p. заменив t   через , где v - частота колебаний, получим связь между длиной волны, частотой колебаний и скоростью распространения волны:

4,7(7 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ