М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DJZargo
DJZargo
30.09.2020 19:13 •  Физика

Найти импульс грузового автомобиля массой 10 т,движущегося со скоростью 36 км/ч.

👇
Ответ:
норрд
норрд
30.09.2020

p=m*v формула импульса тела, где m - масса, v - скорость тела.

1) p= 10000*10=100000 кг*м/с (36 км/ч=10 м/с в системе СИ)

4,6(17 оценок)
Ответ:
12Nastya121
12Nastya121
30.09.2020

р-импульс

р=м*v

р=10000*10=100000кг/м/с

36км/ч=10м/c

10т=1000кг

ОТВЕТ:Р=100000кг/м/c.

4,6(60 оценок)
Открыть все ответы
Ответ:
annadubinkina
annadubinkina
30.09.2020

Дано:

λ(max) = 620 нм = 620*10^-9 м

v = 9,1*10^14 Гц

c = 3*10^8 м/с

h = 6,63*10^-34 Дж*с

m(e) = m = 9,1*10^-31 кг

q(e) = q = -1,6*10^-19 Кл

е = 1,6*10^-19 Кл

Ав, V, φ - ?

Cогласно 3-му закону фотоэффекта для каждого вещества существует предельная длина волны, при которой фотоэффект ещё можно наблюдать.

А из 2-го закона фотоэффекта можно заключить, что кинетическая энергия зависит от того, какая длина волны у света (или его частота). И если она больше, чем максимальная (или если частота меньше, чем минимальная частота), то фотоэффекта точно нет, а значит нет и кинетической энергии у электронов:

при λ(max) или, что то же самое, при v(min) - фотоэффект может быть

при λ > λ(max), или при v < v(min) - фотоэффекта точно нет

Длина волны связана с частотой соотношением:

λ = V*T, где T = 1/v, а V = c (скорость света в вакууме) =>

λ = c*(1/v) = c/v

λ(max) = c/v(min)

Используем уравнение Эйнштейна для ответов на поставленные вопросы:

Е = Ав + Ек, где

Е = hv - энергия фотона

Ав - работа выхода

hv = Aв + mV²/2

а) Работа выхода Ав - это работа, которая идёт на вырывание электрона из вещества. Это минимальная энергия, которую надо сообщить электрону, чтобы он покинул вещество. И чтобы вырвать электрон без сообщения ему кинетической энергии, нужно совершить работу равную:

hv = Ав, где v должна быть минимальной:

v = v(min) => hv(min) = Ав

v(min) = c/λ(max) => Ав = hc/λ(max) = (6,63*10^-34*3*10^8) / (620*10^-9) = 3,208...*10^-19 = 3,2*10^-19 Дж

б) Кинетическая энергия зависит от частоты. Зависит линейно. Выразим Ек из уравнения Эйнштейна:

Е = Ав + Ек

Ек = Е - Ав

mV²/2 = hv - Ав

Вспомним линейную функцию:

y = kx + b, где k - это коэффициент пропорциональности (постоянная величина), x - величина, которая изменяется и от которой зависит значение величины y, а b - это константа (тоже постоянная). По аналогии:

h - коэффициент пропорциональности (постоянная Планка)

v - частота (изменяющаяся величина)

Ав - работа выхода для определённого вещества, в данном случае - для калия (постоянная).

То есть ни от чего, кроме частоты (т.к. изменяется только частота), кинетическая энергия не зависит. А значит от частоты будет зависеть и скорость электрона. Максимальная скорость будет при максимальной частоте. Вообще в уравнении Эйнштейна скорость электрона всегда максимальна, т.к. при вырывании электрон сразу же летит с этой скоростью, и уже в процессе она уменьшается вследствие столкновений электрона с другими частицами. Выразим её:

mV²/2 = hv - Ав | * (2/m)

V² = 2hv/m - 2Aв/m = (2/m)*(hv - Ав)

V = √((2/m)*(hv - Ав)) = √((2/9,1*10^-31)*(6,63*10^-34*9,1*10^-31 - 3,2*10^-19)) = 789115,5154 = 789116 м/с = 7,9*10^5 м/с

в) Проводник будет терять фотоэлектроны. С каждым новым вырванным электроном потенциал проводника увеличивается, вследствие чего каждому новому электрону становится всё тяжелее преодолевать поле тяготения проводника, которое действует на электроны с кулоновской силой. Сила эта становится всё больше и больше (вследствие увеличения положительного заряда). В какой-то момент вырванные электроны не смогут улететь за пределы действия поля проводника и притянутся обратно. В этот момент проводник зарядится до такого потенциала, при котором работа его электростатического поля будет равна изменению кинетической энергии вырванного электрона с максимального значения до нуля (согласно теореме об изменении кинетической энергии):

А(Fk) = ΔЕк

qEΔd = Ек2 - Ек1 = 0 - mV²/2

qE(d2 - d1) = -mV²/2

qEd2 - qEd1 = -mV²/2

Ed2 = φ2

Ed1 = φ1 =>

q(φ2 - φ1) = -mV²/2 => mV²/2 = |q(φ2 - φ1)|

φ2 - φ1 = -φ1 + φ2 = -(φ1 - φ2) = -Uз = -φ(з) => mV²/2 = |-q*(-φ(з))|

mV²/2 = |qφ(з)|, где φ(з) - задерживающий потенциал, равный по модулю потенциалу проводника φ:

|φ(з)| = φ

Опустим знак модуля, выразим заряд электрона через элементарный заряд е и выразим потенциал проводника:

mV²/2 = еφ

φ = mV²/(2е) = (9,1*10^-31*(7,9*10^5)²)/(2*1,6*10^-19) = 1,7747... = 1,77 В

ответ: 3,2*10^-19 Дж, 7,9*10^5 м/с, 1,77 В.

4,8(100 оценок)
Ответ:
anickava
anickava
30.09.2020
Предположение:
Пуля не деформируется.
Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть x'(0) = v_0 .

По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b:
F_{r} = -bv
Земля проявляет вискозность только при достаточной скорости пули, допустим при x'(t) v_{crit}.
Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона:
F_{r}(t) = -bx'(t) = mx''(t) \Rightarrow mx''(t) + bx'(t) = 0
Пусть x(t) = Ce^{rt}. Тогда дифференциальное уравнение имеет вид
mr^2 + br = 0
r_1 = 0
mr_2+b = 0 \Rightarrow r_2 = \frac{-b}{m}
Решением является линейная комбинация функций:

То есть x(t) = C_1e^{0t} + C_2e^{-bt/m} = C_1 + C_2e^{-bt/m}
Тогда v(t) = x'(t) = C_2\frac{-b}{m}e^{-bt/m}
Так как v(0)=v_0, C_2\frac{-b}{m}=v_0 \Rightarrow C_2=\frac{-mv_0}{b}.
x(0) = 0 \Rightarrow C_1 + C_2 = 0 \Rightarrow C_1 = \frac{mv_0}{b}
v(t) = v_0e^{-bt/m}
Тогда
x(t) = \frac{mv_0}{b}(1 - e^{-bt/m})
Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния.
Найдем это расстояние:
Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока
v(t) v_{crit}, то есть
v(t_{crit}) = v_0e^{-bt_{crit}/m} = v_{crit} \Rightarrow -bt_{crit}/m = \ln(\frac{v_crit}{v_0})
Тогда
t_{crit} = \frac{m}{b}\ln(\frac{v_{0}}{v_{crit}})
Соответственно
x(t_{crit}) = \frac{mv_0}{b}(1 - e^{-bt_{crit}/m})=\frac{mv_0}{b}(1 - e^{-\ln(\frac{v_{0}}{v_{crit}})}
x(t_{crit}) = \frac{mv_0}{b}(1 - \frac{v_{crit}}{v_{0}}) = \frac{m}{b}(v_0-v_{crit})
При удвоении начальной скорости, конечная координата равна:
x_{new}(t_{crit}) = \frac{m}{b}(2v_0-v_{crit})
Тогда отношение нового пути к старому равно
\frac{2v_0-v_{crit}}{v_0-v_{crit}},
При, допустим, v_{crit} \triangleq 0.1v_{0}, это отношение равно
\frac{1.9}{0.9} = 2.(1).
4,7(11 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ