Графики зависимости скорости от времени при равноускоренном движении
1. Как вы уже знаете, описать механическое движение тела можно аналитически и графически. Рассмотрим графический описания равноускоренного прямолинейного движения.
Построим график зависимости проекции скорости на ось X от времени для такого движения. Предположим, что тело, начальная скорость которого 4 м/с, движется прямолинейно вдоль оси X с ускорением 1 м/с2. Формула для проекции скорости на ось X в этом случае имеет вид: vx = 4 + t (м/с). Поскольку зависимость vx(t) линейная, то ее графиком является прямая, проходящая через точку, для которой при t = 0 vx = 4 м/с (рис. 24). Если начальная скорость тела v0 = 0, то график зависимости проекции скорости на ось X от времени пройдет через начало координат. 2. Предположим, что направление скорости тела совпадает с положительным направлением оси X, но модуль скорости уменьшается. В этом случае проекция ускорения на ось Xотрицательна, и график зависимости проекции скорости на ось X от времени имеет вид, представленный на рисунке 25 (участок графика AB). В момент времени t = 3 c (точка B) скорость тела стала равной нулю. Тело в этот момент времени останавливается, а затем движется к началу координат. При этом проекция его скорости на ось X отрицательна, а модуль скорости возрастает. Проекция ускорения на ось X также отрицательна. 3. По графику зависимости проекции скорости на ось X от времени можно определить проекцию ускорения тела на эту ось. Для этого выберем на графике два произвольных моментавремени и найдем изменение скорости за этот промежуток времени. Например, проекция начальной скорости тела (см. рис. 25) v0x = 6 м/с, а в момент времени t = 2 с проекция скорости vx = 2 м/с. Следовательно, скорось тела изменилась на –4 м/с (2 м/с – 6 м/с) за 2 с: ax = = –2 м/с2. В данном случае модуль скорости тела уменьшался и направление вектора скорости не совпадало с положительным направлением оси X. Поэтому проекция ускорения на осьX отрицательна. Формула для проекции скорости тела на ось X в этом случае имеет вид: vx = 6 – 2t (м/с).
В системе отсчета, связанной с конькобежцем, На него действуют силы: -сила тяжести mg, центробежная сила m(V^2)/R - обе приложены в центре тяжести -нормальная реакция, сила трения-обе приложены в точке контакта со льдом(эти силы не потребуются) Конькобежец находится в равновесии, когда равнодействующая силы тяжести и центробежной силы, проходит через точку контакта. Угол наклона этой равнодействующей и будет искомый. Теперь используем условие равновесия: сумма моментов всех сил должна быть равна нулю. Моменты находим относительно точки касания: mg*h*cosA+ [m(V^2)/R]*h*sinA=0 ctgA=(V^2)/Rg=10^2/30*10=1/3 А=72град. h-расстояние от центра тяжести до точки контакта.
найти: S-?
S=v+vo/2*t
S=20+0/2 * 5= 10*5=50м
ответ: S=50м