- прицельный параметр (его мы и будем искать потом).
с горизонтом такой, что его синус
, где
- радиус каждого из шаров.

.)
и
члены, содержащие выражения с фактором
, возведем их в квадрат и сложим. Тогда около этого фактора после сложения окажется тригонометрическая единица. Так мы избавляемся от функции угла.
и подставим эту конструкцию в
.
.
:
.
.
и
. Опять выражаем из них выражения с фактором
, но в этот раз мы разделим одно на второе (косинус на синус, например). Получим:
.
и
, находим одно тривиальное решение, отвечающее отсутствию удара вообще и одно нетривиальное, отвечающее равенству правых частей. Это равенство представляет из себя некое уравнение на угол. Теперь мы вспомним про самое первое уравнение, написанное в решении. Из него легко получить 
и
уравнение относительно прицельного параметра, получим окончательный ответ:![d=2R\left\{\dfrac13\left[1+\left(-1+2\dfrac{1\pm\sqrt{4\mu^2-3}}{1-\mu}\right)\right]^2\right\}^{-1/2}.](/tpl/images/0486/6836/a7d69.png)
.
1) p = p2 - p1 ; p1 = 0; p = p2 ; p = mV;
S = V^2 - V0^2/2a ; V^2 = 2aS = 2*8*1 = 16; V = 4;
p = 0.2*4 = 0.8
2) По закону сохранения:
m1v1 = V(m1+m2) ; V = m1V1/(m1+m2) = (30000*1.5)/(30000+20000) = 0.9м/c