Результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади той поверхности, перпендикулярно которой она действует. Подтверждается это утверждение с различных опытов и явлений, которые человек достаточно часто наблюдает в своей собственной жизни. Например, человек, надев лыжи, может идти почти не проваливаясь в снег. Острые концы у кнопок, гвоздей, иголок и др. позволяет легче их использовать (приколоть кнопкой газету, вбить гвоздь...). Из приведенных примеров несложно сделать вывод: чем больше площадь поверхности, на которую действует сила, тем меньшее будет результат действующей силы. Причем во всех рассмотренных случаях сила действовала перпендикулярно поверхности.
Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.
Большая по значению сила, действующая на ту же площадь будет оказывать большее давлениею
Давление обозначается буквой р. Измеряется в паскалях. За один паскаль принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м2 .
1.Импульс силы: величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела): мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости. 3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию 6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.
2. 155-20