1. общая формула i способ: s = v0*t+(a*t^2)/2 подставляем наши значения в формулу и получаем 2 системы: 1) 40 = 5*v0 + (a*5^2)/2 2) 120 = 15*v0 +(a*15^2)/2 //решаем две системы, сначала выражаем v0 1)v0 = -8 + (5*a)/2 //разделили на 5 сразу 2)v0 = -8 +(15*a)/2 //разделили на 15 сразу //подставляем уравнение (1) в уравнение (2) -8 +(5*a)/2 = -8 +(15*a)/2 //умножаем на 2 -16 + 5*2 = - 8 +15*a // переменные влево, а известные значения вправо 10*a =0 a=0 м/с^2 //ответ ii способ: чисто логически и без формул за 5с = 40м за 10с = 80м за 15с = 120м за 20с = 160 и т.д. следовательно его ускорение равно 0. 2. равнозамедленное движение общая формула s=(v2^2-v1^2)/2*a //так как a - неизвестное, то выразим a a =(v2^2-v1^2)/2*s //подставим значения a=(-100+25)/50 a=-75/50 a=-3/2 a=-1.5 м/c^2 модуль ускорения равен |a|=1.5 м/с^2
Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
21,3/30= 0,71
И по ТАБЛИЦЕ ищем жидкость.- СМ. ПРИЛОЖЕНИЕ.
Получается - ЭФИР