Объяснение:
Дано:
m = 800 г = 0,8 кг
p₁ = 1,6 кПа = 1600 Па
p₂ = 5·p₁ = 5·1600 = 8000 Па
p₃ = p₂/2 = 8000 / 2 = 4000 Па
ρ - ?
Пусть размеры бруска a×b×c
Тогда:
S₁ = a·b
S₂ =b·c
S₃ = a·c
Имеем:
p₁ = m·g / S₁; S₁ = m·g / p₁ = 0,8·10/1600 = 0,005 м²
p₂ = m·g / S₂; S₂ = m·g / p₂ = 0,8·10/8000 = 0,001 м²
p₃ = m·g / S₃; S₃= m·g / p₃ = 0,8·10/4000 = 0,002 м²
Решим систему:
a·b = 0,005
b·c = 0,001
a·c = 0,002
Получаем:
a = 10 см
b = 5 см
c = 2 см
Объем:
V = 10·5·2 = 100 см³
Плотность:
ρ = m/V = 800 / 100 = 8 г/см³
осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения[1]. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
{\displaystyle T=2\pi {\sqrt {L \over g}}}T=2\pi {\sqrt {L \over g}}
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
Объяснение:
ответ
проекция скорости = -8