1. Сила тяжести - сила, действующая на любое тело вблизи поверхности Земли или другого космического тела.
Точка приложения - центр тела (точка пересечения диагоналей), направлена всегда вертикально вниз.
F=mg, где F - сила тяжести, измеряется в Ньютонах (любая сила измеряется в Ньютонах);
m - масса тела, измеряется в СИ в килограммах;
g - ускорение свободного падения (в средней школе - коэффициент пропорциональности), измеряется в Н/кг (Ньютон на килограмм) или в м/с^2 (метр на секунду в квадрате).
2. Вес тела - сила действия на опору или подвес, возникает в результате действия силы тяжести.
Направлена всегда вертикально вниз, как и сила тяжести.
P=mg
P - вес тела, Ньютоны. Все остальные физические величины описаны выше.
3. Сила упругости - сила, возникающая в результате деформации тела и стремящаяся вернуть его в исходное положение.
Точка приложения в той же точке, где приложена сила действия, которая деформирует тело. Направление противоположно направлению действующей силы.
Fупр=-kx, где F - сила упругости, Ньютоны;
k - коэффициент жесткости пружины, Н/м (Ньютон на метр);
x - удлинение пружины в результате деформации, метры.
4. Сила трения - сила, возникающая в результате соприкосновения двух поверхностей при их относительном движении.
Точка приложения - место соприкосновения поверхности двух тел, направлена всегда в сторону, противоположную направлению движения.
Fтр= μmg, где μ - безразмерная величина, масса и ускорение свободного падения описаны выше.
Схемы наверняка есть в учебнике.
Объяснение:
Всех этих недостатков лишены двигатели воздушного охлаждения. Более того, даже повреждение оребрения цилиндров и головок цилиндров не помешает дальнейшей эксплуатации двигателей. В боевых условиях важным преимуществом двигателей воздушного охлаждения является также значительно меньшее время вывода двигателя на рабочий режим, поскольку не требуется прогрева жидкости, что особенно ярко проявляется в зимнее время. Вышеперечисленные преимущества обусловливают и меньшие эксплуатационные затраты
совершенствование системы газообмена за счет снижения сопротивления впускного и выпускного трактов, переход на трех- и четырехклапанные головки цилиндров, согласование вихревого движения заряда с характеристиками топливоподачи и геометрией камеры сгорания;оптимизация характеристик системы турбонаддува, в том числе за счет применения охлаждения наддувочного воздуха;модернизация системы топливоподачи за счет управления углом опережения впрыскивания топлива, повышения интенсивности подачи и максимальных значений впрыскивания топлива, а также увеличения количества сопловых отверстий распылителя;переход на камеру сгорания открытого типа;применение регулируемой по нагрузке и скоростному режиму рециркуляции отработавших газов (ОГ) с обеспечением охлаждения перепускаемых газов.В Концерне «Тракторные заводы» постоянно ведутся работы по совершенствованию двигателей воздушного охлаждения в направлении как обеспечения современных международных требований к экологической чистоте, так и повышению их агрегатной мощности:
Так, в 2008 году на макетном образце трехцилиндрового двигателя с турбонаддувом были реализованы европейские экологические нормы уровня Stage-3A за счет применения охлаждения надувочного воздуха. А в 2013 году переход с двухклапанных головок цилиндров (ГЦ) на трехклапанные позволил разнести по разным сторонам ГЦ впускные и выпускной канал, снизив, тем самым, нежелательный подогрев впускного воздуха и, соответственно, тепловую напряженность двигателя (рис.1). Последнее мероприятие обеспечило возможность отказаться от наклонного расположения форсунки (35о к вертикали), перейдя к вертикальному, и применить многосопловые распылители (с 6-ю отверстиями вместо традиционных 3-х), позволившие повысить степень равномерности распределения топлива по камере сгорания (рис.2). Результатом стало значительное улучшение топливной экономичности двигателей (на 6 - 8%) и увеличение агрегатной мощности (на 15 - 25%).