сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
m (CO2) = 0,1 кг
m (N2) = 0,15 кг
T = 300 K
P = 10^5 Па
p - ?
Решение:
1) По закону Дальтона: p = p1 + p2, причем p = m / V.
Массы газов нам известны, однако, неизвестно, какой объем они занимают.
2) По тому же Дальтону: P = P1 + P2
Выражаем из Менделеева-Клапейрона: P = m R T / M V. Получаем:
P = ( m(N2) R T / M(N2) V ) + ( m(CO2) R T / M(CO2) V ).
Выражаем объем:
V = RT (m(N2) M(CO2) + m(CO2) M(N2)) / P M(N2) M(CO2).
3) Теперь можем найти плотность смеси:
p = (m(CO2) + m(NO2)) P M(N2) M(CO2) / RT (m(N2) M(CO2) + m(CO2) M(N2)).
p = 25*10^-2 * 10^5 * 28*10^-3 * 44*10^-3 / 8,31*3*10^2 (15*10^-2 * 44*10^-3 + 10^-1 * 280*10^-4)
p = 30,8 / 24,93*10^2 (660*10^-5 + 280*10^-5)
p = 30,8 / 24,93*10^2 * 940*10^-5
p = 30,8 / 23,4
p = 1,316 кг/м^3