Потому что задачи, не требующие, собственно, вычисления самого значения ускорения свободного падения, масс планет, расстояний между ними и т.д., подразумевают протекание физического процесса в них на уровне Земли, где g, в общем-то, приблизительно одинаково.
Для более точного ответа приведу вывод g:
|Fтяж| = |Fгр| по 3 з Н,
m g = G m M / R^2,
g = G M / R^2, где M и R - масса и радиус Земли соответственно.
Кстати, допустим, у нас какая-нибудь средненькая задачка на закон сохранения энергии: сначала тело обладало кинетической энергией Ek1 на уровне Земли, а затем поднялось на заданную высоту и стало иметь другую кинетическую энергию Ek2 и, конечно же, потенциальную Ep. Вопрос: найдите Ek2
Решение очевидное, разумеется (а если нет, то ЗСЭ выглядит так (пренебрегаем сопротивлением воздуха): Ek1 = Ep + Ek2).
Так вот... для подсчета значения потенциальной энергии брать g = 9,8 м/с^2, конечно, примерно верно, но можно и рассчитать его новое значение для заданной высоты (но это, конечно, бесполезно, ибо отличие будет совсем незначительным). Целесообразно это делать только для значительных высот.
Движение, при котором за равные промежутки времени тело совершает неравные перемещения, называют неравномерным (или переменным) . При переменном движении скорость тела с течением времени изменяется, поэтому для характеристики такого движения введены понятия средней и мгновенной скоростей. Средней скоростью переменного движения vcp называют векторную величину, равную отношению перемещения тела s к промежутку времени t, за который было совершено это перемещение: vcp=s/t. Средняя скорость характеризует переменное движение в течение только того промежутка времени, для которого эта скорость определена. Зная среднюю скорость за данный промежуток времени, можно определить перемещение тела по формуле s=vср·t лишь за указанный промежуток времени. Найти положение движущегося тела в любой момент времени с средней скорости, определяемой по формуле vcp=s/t, нельзя.
Если жидкость контактирует с твердым телом, то существуют две возможности: 1) молекулы жидкости притягиваются друг у кругу сильнее, чем к молекулам твердого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведет себя ртуть на стекле, вода на парафине или "жирной" поверхности. В этом случае говорят, что жидкость НЕ смачивает поверхность; 2) молекулы жидкости притягиваются друг у кругу слабее, чем к молекулам твердого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведет себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность
Для более точного ответа приведу вывод g:
|Fтяж| = |Fгр| по 3 з Н,
m g = G m M / R^2,
g = G M / R^2, где M и R - масса и радиус Земли соответственно.
Кстати, допустим, у нас какая-нибудь средненькая задачка на закон сохранения энергии: сначала тело обладало кинетической энергией Ek1 на уровне Земли, а затем поднялось на заданную высоту и стало иметь другую кинетическую энергию Ek2 и, конечно же, потенциальную Ep. Вопрос: найдите Ek2
Решение очевидное, разумеется (а если нет, то ЗСЭ выглядит так (пренебрегаем сопротивлением воздуха): Ek1 = Ep + Ek2).
Так вот... для подсчета значения потенциальной энергии брать g = 9,8 м/с^2, конечно, примерно верно, но можно и рассчитать его новое значение для заданной высоты (но это, конечно, бесполезно, ибо отличие будет совсем незначительным). Целесообразно это делать только для значительных высот.