В ДАДЕ АД-5, АЕ3-4, ДЕ-3 В ДАВС АВ-7,5, АС-6, ВС-4,5 1 группа найти синусы угла А для ДАДЕ и ДАВС 2 группа найти косинусьы угла А для ДАДЕ и ДАВС 3 группа найти тангенсы угла А для ДАДЕ и ДАВС RGoкочала найти котангенсы угла А для
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.