Однакові маленькі металеві кульки, що несуть однойменні заряди 15 і 60 нКл, знаходяться на відстані 2 м один від одного. Кульки привели в зіткнення. На яку відстань їх потрібно розвести, щоб сила взаємодії залишилася колишньою?
Так як кульки однакові, то після зіткнення вони будуть мати однакові заряди q'1 = q'2 = q'. За законом збереження заряду
q1 + q2 = 2q’.

2. Заряджені кульки, що знаходяться на відстані 2 м один від одного, відштовхуються з силою 1 Н. загальний заряд кульок 50 мкКл. Як розподілений заряд між кульками?
Сумарний заряд кульок дорівнює q = q1 + q2.

q1 = 38 мкКл, q2 = 12 мкКл. При обчисленні коренів системи рівнянь виходить, що q1 = 12 мкКл, q2 = 38 мкКл.
3. Два маленьких однакових за розміром заряджених кульки, що знаходяться на відстані 2 м, притягуються з силою 27 мН. Після того, як кульки приведені в зіткнення і потім рознесені на колишню відстань, вони стали відштовхуватися з силою 9 мН. Визначте початкові заряди кульок.
Так як кульки однакові, то після зіткнення їх заряди будуть однаковими по модулю. Оскільки кульки до зіткнення притягувалися, то мали різнойменні заряди; після зіткнення відштовхуються, отже, заряди однойменні. Тому в законі збереження заряду:
q1 – q2 = 2q’.
q = 4 мкКл

1) q2 = 6 мкКл 2) q2 = - 2 мкКл
q1 = - 6 мкКл q1 = 2 мкКл
Т. ч. q1 = ± 6 мкКл, q2 = - +2 мкКл
Объяснение:
минимум Так
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле ( что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток , который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток , чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверхпроводником ), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток , и как раз в таком количестве, чтобы вытолкнуть поле наружу.
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть равен нулю. Но погодите, а как же с вариацией r? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать r постоянным. Далее, единственная возможность, чтобы Ñ2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом.