m = 30 кг.
g = 10 м/с2.
а = 0 м/с2.
∠α = 30°.
μ = 0,5.
Fт - ?
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
1850 Дж / (кг*К)
Объяснение:
1)
Для гелия:
ν₁ = m₁ / M₁
Отсюда
m₁ = ν₁*M₁ = 2*4*10⁻³ = 8*10⁻³ кг
Для кислорода:
ν₂ = m₂ / M₂
Отсюда
m₂ = ν₂*M₂ = 3*16*10⁻³ = 48*10⁻³ кг
Суммарная масса смеси:
m = m₁ + m₂ = (8+48)*10⁻³ = 56*10⁻³ кг
2)
Находим массовые доли газов:
ω₁ = m₁ / m = 8*10⁻³ / 56*10⁻³ ≈ 0,14
ω₂ = m₂ / m = 48*10⁻³ / 56*10⁻³ ≈ 0,86
3)
Удельная теплоемкость гелия (число степеней свободы двухатомного газа i = 3)
cp₁ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 4*10⁻³ ≈ 5 200 Дж / (кг*К)
Для кислорода:
cp₂ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 16*10⁻³ ≈ 1 300 Дж / (кг*К)
4)
Для смеси:
cp = cp₁*ω₁ + cp₂*ω₂ = 5200*0,14 + 1300*0,86 ≈ 1 850 Дж/(кг*К)