Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22
Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
h=v0sinα⋅t—gt22
gt2—2v0sinα⋅t+2h=0
Найдем дискриминант:
D=4v20sin2α—8gh
Проверять положительность дискриминанта не будем, поскольку решение задачи быть должно, значит он априори неотрицателен.
Тогда корни квадратного уравнения равны:
t=2v0sinα±4v20sin2α—8gh−−−−−−−−−−−−√2g
Мы получили ответ в общем виде. Теперь подставим все известные величины в СИ:
t=2⋅10⋅sin30∘±4⋅102⋅sin230∘—8⋅10⋅1,05−−−−−−−−−−−−−−−−−−−−−−−√2⋅10
Получаем два корня:
[t=0,7сt=0,3с
A = (m v²)/2. отсюда v = sqrt((2A)/m).
v = sqrt((2*6*10^(4))/50) ≈ 48.989 м/c
2) воспользуемся уравнение скорости
v = v0 + a t
но мы уже допустили, что v0 = 0. тогда
v = a t,
t = v/a = 48.989/2 ≈ 24.5 c