Задачу разобьем на несколько частей (процессов) и начнем с последней.1. Движение бруска по шероховатой горизонтальной поверхности.Пусть υ2 — это скорость бруска сразу после удара. Пройденный путь s найдем, используя закон сохранения энергии. За нулевую высоту примем высоту поверхности, по которой движется брусок (рис. 1). Работа силы тренияA=ΔE=E−E0,где A=−Ftr⋅s,Ftr=μ⋅N=μ⋅M⋅g,E=0,E0=M⋅υ222. Тогда−μ⋅M⋅g⋅s=−M⋅υ222,s=υ222μ⋅g.(1) 2. Столкновение тела и бруска.Пусть υ — это скорость тела перед ударом, υ1 — скорость тела после удара. Так как удар упругий, то для нахождения скорости бруска υ2 воспользуемся законами сохранения энергии и импульса. За нулевую высоту примем высоту поверхности, на которой находится брусок, ось 0Х направим по направлению скорости υ (рис. 2). Запишем законы:m⋅υ22=m⋅υ212+M⋅υ222,m⋅υ→=m⋅υ→1+M⋅υ→2,m⋅υ2=m⋅υ21+M⋅υ22,m⋅υ=m⋅υ1x+M⋅υ2 (направление скорости υ1 мы не знаем). Решим систему двух последних уравнений:υ1x=υ−M⋅υ2m,m⋅υ2=m⋅(υ−M⋅υ2m)2+M⋅υ22,m⋅υ2=(m⋅υ2−2M⋅υ⋅υ2+M2⋅υ22m)+M⋅υ22,M2⋅υ22m+M⋅υ22=2M⋅υ⋅υ2,υ2⋅(Mm+1)=2υ,υ2=2m⋅υM+m.(2) 3. Движение тела на нити.Будем так же использовать закон сохранения энергии. За нулевую высоту примем нижнее положение тела (рис. 3). Внешних сил нет, поэтомуE=E0,m⋅g⋅h0=m⋅υ22,где h0 = BC = AC – AB = l⋅(1 – cos α) (см. рис. 3). Тогдаg⋅l⋅(1−cosα)=υ22,υ=2g⋅l⋅(1−cosα)−−−−−−−−−−−−−−√.(3) Подставим уравнение (3) в (2), а затем в уравнение (1). В итоге получаем:υ22=(2mM+m)2⋅2g⋅l⋅(1−cosα),s=(2mM+m)2⋅2g⋅l⋅(1−cosα)2μ⋅g=4m2⋅l⋅(1−cosα)μ⋅(M+m)2.
1Введите систему координат, относительно которой вы будете определять направление и модуль скорости. Если в задаче уже задана формула зависимости скорости от времени, вводить систему координат не нужно – предполагается, что она уже есть.2По имеющейся функции зависимости скорости от времени можно найти значение скорости в любой момент времени t. Пусть, например, v=2t²+5t-3. Если требуется найти модуль скорости в момент времени t=1, просто подставьте это значение в уравнение и посчитайте v: v=2+5-3=4.
3Когда задача требует найти скорость в начальный момент времени, подставьте в функцию t=0. Таким же образом можно найти время, подставив известную скорость. Так, в конце пути тело остановилось, то есть, его скорость стала равна нулю. Тогда 2t²+5t-3=0. Отсюда t=[-5±√(25+24)]/4=[-5±7]/4. Получается, что либо t=-3, либо t=1/2, а поскольку время не может быть отрицательным, остается только t=1/2.4Иногда в задачах уравнение скорости дается в завуалированной форме. Например, в условии сказано, что тело двигалось равноускоренно с отрицательным ускорением -2 м/с², а в начальный момент скорость тела составляла 10 м/с. Отрицательное ускорение означает, что тело равномерно замедлялось. Из этих условий можно составить уравнение для скорости: v=10-2t. С каждой секундой скорость будет уменьшаться на 2 м/с, пока тело не остановится. В конце пути скорость обнулится, поэтому легко найти общее время движения: 10-2t=0, откуда t=5 секунд. Через 5 секунд после начала движения тело остановится.5Помимо прямолинейного движения тела, существует еще и движение тела по окружности. В общем случае оно является криволинейным. Здесь возникает центростремительное ускорение, которое связано с линейной скоростью формулой a(c)=v²/R, где R – радиус. Удобно рассматривать также угловую скорость ω, причем v=ωR.
Известно, что на Луне на тело массой 1 кг действует сила тяжести, равная 1,62 Н.
Соответственно: Сила тяжести тела массой 2 кг = 1,62*2=3,24 Н.