Когда растает льдинка в первом сосуде, уровень воды в первом сосуде опустится
Когда растает льдинка во втором сосуде, уровень воды во втором сосуде опустится
Объяснение:
Пусть плотность льда , объем льда , плотность наполнителя полости (воздуха или свинца) , объём полости , плотность воды . Можно считать, что сосуд цилиндрический с площадью сечения S.
Сначала льдинка плавает так, чтобы сила Архимеда компенсировала силу тяжести. Найдём объём погружённой в воду части :
После таяния льда в сосуд добавится вода объёмом
,
а также во втором случае свинца
1) Наполнитель - воздух. Изменение уровня воды:
Плотность воздуха хоть и невелика, но всё же отлична от нуля, значит, высота уменьшится.
2) Наполнитель - свинец. Изменение уровня воды:
Выражение в скобках меньше нуля, значит, и в этом сосуде уровень воды тоже понизится
Сторону равностороннего треугольника можно вычислить по формуле -
a=\frac{2h}{\sqrt{3} }a=
3
2h
Где а - длина стороны равностороннего треугольника, h - длина высоты равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}a=\frac{2*6\sqrt{3} }{\sqrt{3} }a=12\end{lgathered}
a=
3
2∗6
3
a=12
a = 12 см.
Площадь равностороннего треугольника можно вычислить по формуле -
S =\frac{a^{2} \sqrt{3} }{4}S=
4
a
2
3
Где S - площадь равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}S =\frac{12^{2} \sqrt{3} }{4}S =\frac{144\sqrt{3} }{4}S = 36\sqrt{3}\end{lgathered}
S=
4
12
2
3
S=
4
144
3
S=36
3
ответ: 36√3 см².
конструкция первого кофейника более рациональна, потому что:
1) позволяет полнее наполнить кофейник
2) позволяет плавнее осуществлять налив из него, как при полном , так и при частичном заполнении