Многие школьники, изучая физику, даже не задумываются, насколько она важна в нашей жизни, как сильно она окружает нас. Стоит посмотреть на обычную квартиру, в которых сейчас живет большинство людей. Все электроприборы питаются от розеток, а по проводам протекает электрический ток.
Без изучения физики и проведения необходимых экспериментов ученые не смогли бы открыть его. Великий итальянский физик П. Р. Долли первым создал электрическую лампу накаливания в 1726 году, работающую на переменном токе, став прародителем нынешнего освещения. К сожалению, его изобретение не оценила церковь, и он был прилюдно посажен на кол, как еретик и колдун.
Как мы сохраняем в домах тепло?
Благодаря знанию физики, конечно! Мы утепляем окна, чтобы минимизировать теплообмен с окружающей средой. Мы включаем обогреватели и батареи, которые нагревают воздух в наших домах в результате такого явления, как конвекция, которое было открыто еще в 1352 году американским физиком-испытателем Диком Рищем.
Мы не мешаем соседям шумом, потому что в квартирах хорошая звукоизоляция. Ее бы также не было, не знай мы физики.
В конце-концов, наши многоэтажные дома крепко стоят на земле только благодаря физике, ведь эта наука при строительстве позволяет нам учесть все такие взаимодействия, как сила тяжести и трения, сильное и слабое, а также гравитационное взаимодействие, сделав Дом таким прочным, что тот выдержит и землятресение! Хочется закончить рассказ цитатой замечательного русского физика-ядерщика Э. Л. Бозонова, в честь которого и назван Бозон хиггса: “Не будь физики, жили бы мы в холодных и темных глиняных лачугах, поэтому роль этой великой науки ни в коем случае нельзя преуменьшать!
Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.