Q=84 195,3125
Объяснение:
Дано:
m1=384 г.=0,384 кг.(масса алюминиевой кастрюли)
q2=1000 кг./м^3 (плотность воды)
c1=920 Дж./кг.*градус С (удельная теплоемкость алюминиевой кастрюли)
c2=4200 Дж./кг.*градус С (удельная теплоемкость воды)
V=1 л.=0,001 м^3 (объем он и для воды ,и для кастрюли одинаковый)
t=100 гр.С (конечная температура)
t0=25 гр.С (начальная температура)
Найти:
Q1,Q2,Q
1)Q1= c1*m1*(t-t0)=c1*q1*V*(t-t0)=920 Дж./кг.*гр.С*0,384 кг.*(100 гр.С-25 гр.С)=195,3125 Дж.
2)Q2=c2*m2*(t-t0); m2=q2*V= 1000 кг./м^3*0,001 м^3=1кг.
Q2=4200 Дж./кг.*гр.С*1кг.*(100гр.С-80 гр.С)= 84 000 Дж.
3)Q=Q1+Q2= 195,3125 Дж.+84000 Дж.=84 195,3125 Дж. (общее кол-во теплоты)
ответ:Q=84 195,3125
(я не знаю как от вас требует преподаватель, если нужно сократи)
а) 72 минуты
б) 11:36
Пусть до туннеля автобус ехал со скоростью X м/сек, тогда 1-ю половину тоннеля он проехал со скоростью (X / 2,1) = (X / (21 / 10)) = (10X) / 21 м/сек, а 2-ю половину со скоростью (X / (1,5)) = (X / (3/2)) = (2X) / 3 м/сек. В туннеле автобус находился 6 + 60 + 6 = 72 минуты (до 11:00, с 11:00 до 12:00 и после 12:00). Тогда обозначив половину длины туннеля за S, можно составить уравнение:
Учитывая, что первую половину туннеля автобус ехал со скоростью в 2,1 раза меньше X, найдём время, за которое он проехал ёё:
, т.е. через 42 минуты после въезда в туннель автобус проехал половину туннеля, и в таком случае время на часах составляло 10:54 + 00:42 = 11:36
Пусть происходит какая-нибудь химическая реакция, например горение угля в воздухе. При этом передается теплота окружающим телам; они нагреваются, т. е. увеличивается их энергия. Кроме того, сгорание угля может сопровождаться еще и совершением некоторой механической работы, если, например, уголь сгорает в топке котла паровой машины. Изменилось ли еще что-нибудь в нашей системе тел (уголь, воздух, машина) во время процесса работы машины? До горения мы имели уголь и кислород воздуха, после сгорания — углекислый газ. Следовательно, изменился и химический состав тел. Таким образом, изменение химического состава тел сопровождается совершением работы и нагреванием, т. е, передачей теплоты. Отсюда мы делаем заключение, что внутренняя энергия тел зависит также от их химического состава. В нашем примере энергия угля и кислорода, содержащегося в воздухе, больше, чем энергия образовавшегося из них углекислого газа. Избыток энергии угля и кислорода над энергией углекислого газа и пошел на нагревание окружающих тел и на совершение работы.
Рассмотрим еще пример: тела, заряженные электричеством, например грозовые облака. При образовании молнии происходит ряд изменений: нагревается воздух и разряжаются облака. Энергия тел зависит не только от их температуры, но и от распределения электрических зарядов на этих телах. При разряде изменяется и то и другое, но полная энергия облаков и воздуха остается неизменной. Эта неизменность полной энергии при всех происходящих процессах и представляет собой закон сохранения энергии. Его можно в самом общем виде сформулировать следующим образом.
Энергия тел зависит от их скоростей, положения, температуры, формы, химического состава и т. д. Изменение энергии тел происходит либо за счет работы, совершаемой этими телами, либо за счет передачи энергии другим телам. Если мы рассматриваем все тела, участвующие в процессе, то полная энергия их остается неизменной.
Самым существенным в этом законе является необходимость учитывать все тела, участвующие в рассматриваемых процессах. Это не всегда легко сделать. Так, во втором из разобранных нами примеров, кроме указанных изменений, происходит ряд других, менее значительных, а именно: от молнии во все стороны распространяется свет, слышен гром, т. е. разносится звук; происходит соединение азота и кислорода воздуха, образующих некоторое количество окислов азота, и т. д. Звук и свет поглощаются окружающими телами, что в конце концов также вызывает их нагревание. Но нагревающиеся при поглощении звука и света тела могут находиться очень далеко от места образования молнии. В частности, свет от молнии может даже уйти за пределы земного шара и поглотиться где-нибудь на отдаленных мировых телах.
Таким образом, строго говоря, при учете всех тел, участвующих в рассматриваемом процессе, мы практически можем встретиться с непреодолимыми затруднениями. Однако в тех случаях, где такой учет возможно провести достаточно строго, мы всегда убеждаемся в справедливости закона сохранения энергии. Это приводит нас к убеждению, что кажущиеся отступления от этого закона объясняются недостаточно полным учетом всех происшедших изменений; и действительно, всегда в этих случаях удается указать на какие-нибудь пропуски в полноте учета. Поэтому мы убеждены во всеобъемлющем значении закона сохранения энергии.
В настоящее время уже нет нужды проверять этот закон в каждом конкретном случае; наоборот, убеждение в его справедливости позволяет при рассмотрении конкретных случаев предвидеть результаты или исправлять ошибки в рассуждениях. Закон сохранения энергии принадлежит к числу плодотворнейших, и им широко пользуются в самых разнообразных случаях.