1) q=2 10⁻⁴cos8πt; для общего случая колебания заряда определяется уравнением: q=Qcosωt; Q - амплитуда заряда; ωt - фаза; ω - циклическая частота, определяется уравнением: ω=2π/Т=2πν: Т - период; ν-частота; t - время. Для нашего случая; Q=2 10⁻⁴ Кл; ωt=8πt - фаза; ω=8π с⁻¹; циклическая частота; T=2π/ω=2π/8π=0,25 c; период; ν=1/Т=1/0,25=4 Гц; частота; величина заряда через t=0,5 с: q=2 10⁻⁴cos8π*0,5=2 10⁻⁴cos4π=2 10⁻⁴ Кл. т. к. cos4π=1.
1) q=2 10⁻⁴cos8πt; для общего случая колебания заряда определяется уравнением: q=Qcosωt; Q - амплитуда заряда; ωt - фаза; ω - циклическая частота, определяется уравнением: ω=2π/Т=2πν: Т - период; ν-частота; t - время. Для нашего случая; Q=2 10⁻⁴ Кл; ωt=8πt - фаза; ω=8π с⁻¹; циклическая частота; T=2π/ω=2π/8π=0,25 c; период; ν=1/Т=1/0,25=4 Гц; частота; величина заряда через t=0,5 с: q=2 10⁻⁴cos8π*0,5=2 10⁻⁴cos4π=2 10⁻⁴ Кл. т. к. cos4π=1.
f(υ) = 4πυ² √[ ( μ/(2πRT) )³ ] exp( -μυ²/(2RT) ) ;
Средняя скорость по Максвеллу:
<υ> = √[ 8RT/(πμ) ] ;
Тогда:
<υ>² = 8RT/(πμ) ;
И:
f(<υ>) = ( 32RT/μ ) √[ ( μ/(2πRT) )³ ] exp( -4/π ) ;
f(<υ>) = ( 16/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
Отсюда доля частиц со скоростями от <υ> до <υ>+Δυ, где Δυ=2 м/с, составит:
δ = f(<υ>) Δυ = ( 16Δυ/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
δ ≈ ( 16*2/π ) √[ 0.028/(5000π) ] exp( -4/π ) ≈ 0.0038 = 0.38 % .