Стержень похож на математический маятник. Период колебаний математического маятника T = 2pi*sqrt(l/g), где l - длина стержня, g - коэффицент свободного падения. Для того, чтобы выяснить во сколько раз измениться период, вычислим соотношение периодов: T1/T2 = 2pi*sqrt(0.6/g)/2pi*sqrt(0.5/g) -> (2pi сокращаются) -> sqrt(0.6/g)/sqrt(0.5/g) -> (числитель и знаменатель возводим в квадрат) -> (0.6/g)/(0.5/g) -> (g сокращаются) -> 0.6/0.5 = 1.2. Это значение показывает во сколько раз период колебаний стержня длинной 60 см больше периода колебаний стержня длинной 50 см. ответ: уменьшится в 1.2 раза.
Стержень похож на математический маятник. Период колебаний математического маятника T = 2pi*sqrt(l/g), где l - длина стержня, g - коэффицент свободного падения. Для того, чтобы выяснить во сколько раз измениться период, вычислим соотношение периодов: T1/T2 = 2pi*sqrt(0.6/g)/2pi*sqrt(0.5/g) -> (2pi сокращаются) -> sqrt(0.6/g)/sqrt(0.5/g) -> (числитель и знаменатель возводим в квадрат) -> (0.6/g)/(0.5/g) -> (g сокращаются) -> 0.6/0.5 = 1.2. Это значение показывает во сколько раз период колебаний стержня длинной 60 см больше периода колебаний стержня длинной 50 см. ответ: уменьшится в 1.2 раза.
N = mg, из второго закона Ньютона, в проекции на ось У
P = mg, следствие из выше сказанного (1)
m = pV, где р — плотность воды (2)
р(воды) = 1000 кг/м³
P = рVg, следствие из (1) и (2)
g = 10 м/с² (постоянная, ускорение свободного падения)
V = 9 дм³ = 0.009 м³
P = 1000 * 0.009 * 10 = 90 Н
ответ: 90 Н.