Для замкнутой системы тел момент внешних сил всегда равен нулю, так как внешние силы вообще не действуют на замкнутую систему. Поэтому , то есть или Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени. Это один из фундаментальных законов природы. Аналогично для замкнутой системы тел, вращающихся вокруг оси z: отсюда или . Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения. Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю. Очень нагляден закон сохранения момента импульса в опытах с уравновешенным гироскопом – быстро вращающимся телом, имеющим три степени свободы (рис. 6.9). Рис. 6.9 Рис. 6.10 Используется гироскоп в различных навигационных устройствах кораблей, самолетов, ракет (гирокомпас, гирогоризонт). Один из примеров навигационного гироскопа изображен на рисунке 6.10. Именно закон сохранения момента импульса используется танцорами на льду для изменения скорости вращения. Или еще известный пример – скамья Жуковского (рис. 6.11). Рис. 6.11 Изученные нами законы сохранения есть следствие симметрии пространства-времени. Принцип симметрии был всегда путеводной звездой физиков, и она их не подводила. Но вот в 1956 г. Ву Цзянь, обнаружил асимметрию в слабых взаимодействиях: он исследовал β-распад ядер изотопа СO60 в магнитном поле и обнаружил, что число электронов, испускаемых вдоль направления магнитного поля, не равно числу электронов, испускаемых в противоположном направлении. В этом же году Л. Ледерман и Р. Гарвин (США) обнаружили нарушение симметрии при распаде пионов и мюонов. Эти факты означают, что законы слабого взаимодействия не обладают зеркальной симметрией.
Формула: A = Fs, где А - работа, F - сила и s - пройденный путь. Единица измерения - Джоули [Дж]
Пример. Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м3.
Дано: V = 0,5 м3 ρ = 2500 кг/м3 h = 20 м
А=?
Решение: A = Fs, где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.
Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг. F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н. A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.
Поэтому , то есть или Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.
Аналогично для замкнутой системы тел, вращающихся вокруг оси z: отсюда или . Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.
Очень нагляден закон сохранения момента импульса в опытах с уравновешенным гироскопом – быстро вращающимся телом, имеющим три степени свободы (рис. 6.9). Рис. 6.9 Рис. 6.10 Используется гироскоп в различных навигационных устройствах кораблей, самолетов, ракет (гирокомпас, гирогоризонт). Один из примеров навигационного гироскопа изображен на рисунке 6.10.
Именно закон сохранения момента импульса используется танцорами на льду для изменения скорости вращения. Или еще известный пример – скамья Жуковского (рис. 6.11).
Рис. 6.11
Изученные нами законы сохранения есть следствие симметрии пространства-времени.
Принцип симметрии был всегда путеводной звездой физиков, и она их не подводила.
Но вот в 1956 г. Ву Цзянь, обнаружил асимметрию в слабых взаимодействиях: он исследовал β-распад ядер изотопа СO60 в магнитном поле и обнаружил, что число электронов, испускаемых вдоль направления магнитного поля, не равно числу электронов, испускаемых в противоположном направлении.
В этом же году Л. Ледерман и Р. Гарвин (США) обнаружили нарушение симметрии при распаде пионов и мюонов.
Эти факты означают, что законы слабого взаимодействия не обладают зеркальной симметрией.