Наводчик выставляет требуемый угол возвышения и азимут (для орудий, установленных в поворотных башнях) орудийного ствола. Стрелок освобождает пружину спускового механизма. Освобожденная пружина преобразует потенциальную энергию , запасённую в сжатом состоянии, в кинетическую энергию бойка. Неупругий удар бойка накалывает капсюль снарядной гильзы, воспламеняется порох. Огромное количество теплоты, определяемое удельной теплотой сгорания пороха передаётся рабочему телу, в роли которого выступают газообразные продукты сгорания пороха. Раскалённые пороховые газы, адиабатически расширяясь, давят на поршень, преобразуя внутреннюю энергию рабочего тела в механическое движение поршня (каковым является снаряд в канале ствола). Таким образом, в момент выстрела орудие представляет собой однотактный двигатель внутреннего сгорания. Поршень-снаряд обретает ускорение, скорость снаряда растёт, нарезы внутри канала придают снаряду вращение вокруг оси снаряда. В момент вылета снаряда по закону сохранения импульса срабатывает откатник орудия, производя за счёт полученного импульса некоторую работу, взводя пружину ударного механизма, освобождая казенник от снарядного патрона и (для автоматических орудий) подавая в орудие следующий снарядный комплект. Вылетевший из ствола снаряд, по закону сохранения момента импульса, продолжает полёт под действием силы тяжести и сопротивления воздуха, вращаясь вокруг своей оси. Последнее создаёт гироскопический эффект, стабилизирующий полёт снаряда. Сопротивление воздуха придаёт снаряду торможение, в силу чего идеальная парабола траектории превращается в кривую. Изменяя угол вылета снаряда, азимут и (для орудий типа гаубиц) начальную скорость вылета снаряда, зная, как эти параметры соотносятся с дальностью и высотой (для зенитных орудий), орудийный расчёт в состоянии предсказать с высокой степенью вероятности место встречи снаряда с мишенью. Резюме: преобразование различных видов энергий в энергию механического движения различных механизмов орудия и в кинетическую энергию снаряда. Движение под действием двух сил - силы тяжести и сопротивления воздуха с начальной скоростью, направленной под углом к горизонту. Закон сохранение импульса. Закон сохранения углового момента. Адиабатическое расширение газа. Гироскопический эффект. Упругие и неупругие деформации.
Раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами) , из которых состоит вещество. Считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло. Молекулы взаимно притягиваются — в этом невозможно сомневаться.
Если бы на какое-то мгновение молекулы перестали притягиваться, то все жидкие и твердые тела распались бы и весь мир превратился в газ. Молекулы отталкиваются, и это несомненно, так как иначе жидкость сжималась бы так же легко, как и газ. Между молекулами действуют силы, во многом похожие на межатомные силы, о которых мы говорили выше. На больших расстояниях молекулы притягиваются слабо, при сближении сила их взаимодействия сначала растет, затем падает до нуля; при дальнейшем сближении молекулы отталкиваются. Кривая потенциальной энергии, которую мы только что рисовали для атомов, правильно передает и основные черты взаимодействия молекул. Однако между этими взаимодействиями имеются и существенные различия.
Сравним между собой, например, равновесное расстояние между атомами кислорода, образующими молекулу, и атомами кислорода двух соседних молекул, притянувшихся до равновесного расстояния. Различие будет очень заметным: атомы кислорода, образующие молекулу, устанавливаются на расстоянии 1,21 атомы кислорода разных молекул подойдут друг к другу на 2,8 . Равновесные расстояния атомов, связанных в молекулу, всегда меньше равновесных расстояний между теми же атомами, принадлежащими разным молекулам. На языке потенциальной кривой это значит: яма для атомов, связанных в молекулу, расположена ближе к началу координат, чем яма для атомов соседних молекул.
Итак, повторяем, атомы двух соседних молекул устанавливаются на более далеком расстоянии друг от друга, чем атомы, составляющие молекулу. Отсюда вытекает предположение, что молекулы легче оторвать друг от друга, чем атомы. Так оно и есть в действительности. Если энергия, необходимая для разрыва связи между атомами кислорода, образующими молекулу, равна, как говорилось выше, 116 тыс. калорий на моль, то энергия на «растаскивание» двух молекул кислорода равна всего 2 тыс. калорий на моль. Значит, на кривой потенциальной энергии молекул яма будет не только лежать дальше, но и будет менее глубокой.
Но этим не исчерпывается различие между взаимодействиями атомов, образующих молекулу, и взаимодействиями молекул. Химики показали, что атомы сцепляются в молекулу с ограниченным числом соседей. Если два атома водорода образовали молекулу, то третий атом уже не присоединится к ним для этой цели. Атом углерода не может образовать молекулу более чем с четырьмя соседями, и т. д. Это важное для химии свойство носит название валентности атомов.
Ничего подобного мы не находим в межмолекулярном взаимодействии. Притянув к себе одного соседа, молекула ни в какой степени не теряет своей «притягательной силы» . Подход соседей будет происходить до тех пор, пока хватит места.
Взаимодействие между молекулами может играть большую или меньшую роль в «жизни» молекул вещества. В свою очередь роль взаимодействия молекул вещества зависит от теплового движения. Чем тепловое движение интенсивнее, тем меньше проявляется молекулярное взаимодействие.
Три состояния вещества — газообразное, жидкое и твердое — различаются той ролью, которую играет в их существовании взаимодействие молекул.
Плотность-1000 кг\м3
h - 100 м
g 10 ( 9.8 ) н\ кг
Найти:
Р( давление) - ?
Решение : р= GPh
Р- 10 * 1000 ч 100 = 1 000000 Па- 1000 КПа
ответ : давление ( р ) = 1000 кПа