Ускорение при скольжении вниз по наклонной плоскости равно: a = g*(SIN(φ) - μ*COS(φ)) (1), где φ - угол наклона, μ - коэффициент трения скольжения. По условию при φ = β д.б. a = 0 (движется равномерно); подставив в (1), получим: μ = TAN(β) (2). Теперь подставляем в (1) φ = α и значение μ из (2): a = g*(SIN(α) - TAN(β)*COS(α)) (3) = g*(SIN(30°) - TAN(10°)*COS(30°)) = g*(0.5 - 0.1763*0.8660) = g*0.3473. Длина наклонной плоскости l равна: l = h/SIN(α) = 3/0.5 = 6 м. Время находим по формуле t = √(2*l/a) = √(2*6/(g*0.3473)) = 1.88 с.
Скорость в какой момент? В момент касания? Это задача на закон сохранения энергии. В верхней точке тело обладает максимальной потенциальной энергией, но ещё не движется, поэтому кинетическая там равна нулю. В нижней точке тело уже на поверхности, поэтому потенциальная энергия ноль, а кинетическая максимальна. Значит полная энергия в первом случае равна максимальной потенциальной, а во втором максимальной кинетической. Потенциальная вычисляется по формуле Wп = mgh, где m - масса тела, g - ускорение свободного падения (или коэффициент силы тяжести ещё можно назвать, на Земле 9,8 =примерно 10 Н/кг) , h- высота, с которой падает тело. Кинетическая энергия вычисляется по формуле Wk = mv^2 /2, где m - масса тела, v^2 (v в квадрате) - квадрат скорости. приравниваем mgh = mv^2 /2 массы сократить можно, а скорость вычислить.
19300/7300=2.64 раз