Объяснение:
№1
P = IU = I²R
P1/P2 = ( ( 2I )²( R/4 ) )/( I²R ) = ( I²R )/( I²R ) = 1
№2
η = Рпол./Рзат. * 100%
η = ( I2U2 )/( I1U1 ) 100%
I1 = ( I2U2 )/( ηU1 ) 100%
I1 = ( 9 * 22 )/( 90% * 220 ) 100% = 1 A
№3
λ = Тv
λ = 2π√( LCоб. )v
λ = 2π√( L( C1 + C2 ) )v
λ = 2 * 3,14 √( 10 * 10^-3 ( 360 * 10^-12 + 40 * 10^-12 ) ) 3 * 10^8 = 2 * 3,14 √( 10^-2 ( ( 36 + 4 ) 10^-11 ) 3 * 10^8 = 3768 м
№4
WC( max ) = ( CU( max )² )/2
WL( max ) = ( LI( max )² )/2
W = WC( max ) = WL( max )
( CU( max )² )/2 = ( LI( max )² )/2
CU( max )² = LI( max )²
С = ( LI( max )² )/( U( max )² )
W = WC + WL
W = ( CU² )/2 + ( LI² )/2
( CU( max )² )/2 = ( CU² )/2 + ( LI² )/2
CU( max )² = CU² + LI²
LI( max )² = ( LI( max )²U² )/U( max )² + LI²
LI( max )² = L ( I( max )²U² )/U( max )² + I² )
I( max )² = ( I( max )²U² )/U( max )² + I²
Подставим численные данные и решим уравнение
( 5 * 10^-3 )² = ( ( 5 * 10^-3 )²U²/2² ) + ( 3 * 10^-3 )²
2,5 * 10^-5 = 6,25 * 10^-6U² + 9 * 10^-6
( 25 - 9 ) 10^-6 = 6,25 * 10^-6U²
16 = 6,25U²
U = √( 16/6,25 ) = 1,6 B
В некоторых случаях бывает необходимо перевести кубометры в квадратные метры – то есть измерить, сколько квадратных метров материала содержится в одном кубометре. Для этого нужно знать объем и толщину (высоту) материала и произвести вычисления по формуле: S=V/a, где:
S – площадь в метрах квадратных;
V – объем в метрах кубических;
a – толщина (высота) материала.
Таким образом, если нужно определить, какую площадь можно обшить 1 кубическим метром вагонки толщиной 1 см, нужно:
Толщину вагонки в сантиметрах перевести в метры: 1/100=0,01 метра;
Объем вагонки в кубических метрах разделить на полученную толщину в метрах: 1 м3/0,01м=100 м2.
Таким образом, вагонкой, объем которой составляет 1 метр кубический, можно обшить стены площадью 100 метров квадратных.
Для того чтобы эти вычисления не казались такими сложными, достаточно визуализировать понятия кубометра и квадратного метра. Так, чтобы представить себе 1 кубический метр, нужно мысленно нарисовать куб, стороны которого равны 1 метру.
Чтобы представить, сколько квадратных метров содержится в одном кубическом, можно разделить вертикальную плоскость куба на условные полосы, ширина которых равна толщине представляемого материала. Количество таких полос и будет равняться площади материала.