Штатная скорость км/ч м/с м/с м/с. Интервал движения Время посадки высадки Время торможения до остановки Тормозной путь м . Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е. СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Передавая телу энергию, можно перевести его из твердого состояния в жидкое (например, расплавить лед) , а из жидкого - в газообразное (превратить воду в пар) . Отнимая энергию у газа, можно получить жидкость, а из жидкости - твердое тело. Переход вещества из твердого состояния в жидкое называют плавлением. Чтобы расплавить тело, нужно сначала нагреть его до определенной температуры. Температуру, при которой вещество плавится, называют температурой плавления вещества. Одни кристаллические тела плавятся при низкой температуре, другие - при высокой. Лед, например, плавится при температуре 0'С, свинец - при 327'С, олово - при 232'С, а сталь - при 1500'С. Переход вещества из жидкого состояния в твердое называют отвердеванием или кристаллизацией. Чтобы началась кристаллизация расплавленного тела, оно должно остыть до определенной температуры Температуру, при которой вещество отвердевает (кристаллизуется) , называют температурой отвердевания или кристаллизации. Опыт показывает, что вещества отвердевают при той же температуре, при которой плавятся. Например, вода кристаллизуется (а лед плавится) при 0'С, чистое железо плавится и кристаллизуется при температуре 1539'С. Если нагревать какое-либо кристаллическое тело, то можно заметить, что его температура будет повышаться только до момента начала плавления тела, во время процесса плавления температура тела не изменяется.
Плавление и отвердевание кристаллических тел можно объяснить на основании атомно-молекулярной теории строения вещества. Мы знаем, что в кристаллах молекулы (или атомы) расположены в строгом порядке. Этим объясняется, что все кристаллы одного и того же вещества имеют определенную форму. Однако и в кристаллах молекулы или атомы находятся в движении. Но в отличие, например, от газов, где частицы движутся независимо друг от друга, в твердом теле каждая из частиц влияет на движение других. От скорости движения молекул, как мы знаем, зависит температура тела. При нагревании тела средняя скорость движения молекул возрастает, - следовательно, возрастает и их средняя кинетическая энергия. Вследствие этого размах колебаний молекул (или атомов) увеличивается, при этом силы, связывающие их, уменьшаются. Когда тело нагреется до температуры плавления, размах колебаний настолько увеличится, что нарушится порядок в расположении частиц в кристаллах. Кристаллы теряют свою форму: вещество плавится, переходя из твердого состояния в жидкое. При отвердевании вещества все происходит в обратном порядке: средняя кинетическая энергия и скорость молекул в охлажденном расплавленном веществе уменьшаются. Силы притяжения могут снова удержать медленно движущиеся молекулы друг около друга. Вследствие этого расположение частиц становится упорядоченным. Кристаллизация облегчается, если в жидкости с самого начала присутствуют какие-нибудь посторонние частицы, например пылинки. Они становятся центрами кристаллизации. В обычных условиях в жидкости имеется множество центров кристаллизации, около которых и происходит образование кристалликов.