Для начала переведем неудобные 54 км/ч в приятные 15 м/с. Затем, предположив, что "проезжает через туннель" - это промежуток между "первый вагон въехал в туннель" и "последний вагон выехал из туннеля", посчитаем на это основании длину поезда. Примем длину туннеля за м, длину поезда l, скорость нашего поезда м/с, скорость второго поезда , время проезда через туннель сек, а скорость проезда мимо поезда сек. Тогда , оттуда м. Теперь второй случай, поезд мимо поезда , м/с. Второй поезд ехал со скорость 10 метров в секунду.
"закон сохранения электрического заряда гласит, что сумма зарядов электрически замкнутой системы сохраняется. закон сохранения заряда выполняется абсолютно точно. на данный момент его происхождение объясняют следствием принципа калибровочной инвариантности [1][2]. требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. в изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. однако, такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. то есть был бы отрезок времени, в течение которого заряд не сохраняется. требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме." права