Двигаясь по орбите на спутник дейтсует сила всемирного тяготения, но с другой стороны, если он движется по круговой орбите, то он имеет центростремительное ускорение. Запишем силу двумя через закон Всемирного тяготения и через второй закон Ньютона (a=v^2/r), учитывая растояние от центра планеты до спутника (R+h)
G*M*m/(R+h)^2=m*v^2/(R+h)
Выразим массу планеты:
M=[v^2*(R+h)]/G
Теперь тело находится на поверхности, на него действует сила тяжести, которую можно записать двумя видами:
G*M*m/R^2=m*g маса тела сокращается.
Выражаем ускорение свободного падения на планете:
g=G*M/R^2
Подставляем выражение для массы планеты и считаем.
g=[v^2*(R+h)]/r^2
g=[3400*3400*(3400000+600000)]/(34*10^5)^2=4 м/с^2
Двигаясь по орбите на спутник дейтсует сила всемирного тяготения, но с другой стороны, если он движется по круговой орбите, то он имеет центростремительное ускорение. Запишем силу двумя через закон Всемирного тяготения и через второй закон Ньютона (a=v^2/r), учитывая растояние от центра планеты до спутника (R+h)
G*M*m/(R+h)^2=m*v^2/(R+h)
Выразим массу планеты:
M=[v^2*(R+h)]/G
Теперь тело находится на поверхности, на него действует сила тяжести, которую можно записать двумя видами:
G*M*m/R^2=m*g маса тела сокращается.
Выражаем ускорение свободного падения на планете:
g=G*M/R^2
Подставляем выражение для массы планеты и считаем.
g=[v^2*(R+h)]/r^2
g=[3400*3400*(3400000+600000)]/(34*10^5)^2=4 м/с^2
Тогда тепло, которое отдаст гиря при остывании до этой температуры, равно теплу, которое заберут алюминий и вода, нагреваясь до этой же температуры.
Уравнение с одной неизвестной.
Решение. c1*m1*(t-t1)+c2*m2*(t-t1)+c3*m3*(t-t2)=0;
t=(c1*m1*t1+c2*m2*t1+c3*m3*t2)/(c1*m1+c2*m2+c3*m3); c1=896; m1=0,045; c2=4200; m2=0,1; c3=469; m3=0,05;t1=20; t2=100;