Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и равная отношению силы {\displaystyle {\vec {F}}}{\vec {F}}, действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда {\displaystyle q}q[1]:
Напряжённость электрического поля
{\displaystyle {\vec {E}}}\vec E
Размерность
LMT−3I−1
Единицы измерения
СИ
В/м
Примечания
векторная величина
{\displaystyle {\vec {E}}={\frac {\vec {F}}{q}}.}{\displaystyle {\vec {E}}={\frac {\vec {F}}{q}}.}
Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.
В каждой точке в данный момент времени существует своё значение вектора {\displaystyle {\vec {E}}}\vec E (вообще говоря — разное[3] в разных точках пространства), таким образом, {\displaystyle {\vec {E}}}\vec E — это векторное поле. Формально это отражается в записи
{\displaystyle {\vec {E}}={\vec {E}}(x,y,z,t),}{\vec E}={\vec E}(x,y,z,t),
представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как {\displaystyle {\vec {E}}}\vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].
(L(J)²)/2 = (L(Jm)²)/2 - Q²/2C,
следовательно, сила тока в момент времени t найдется из уравнения
J² = (Jm)²- q²/(LC)
Максимальные значения энергии магнитного поля катушки индуктивности и электрического поля конденсатора равны друг другу:
L(Jm)²/2 =(Qm)²/2С,
поэтому
LC = (Qm/Jm)²,
следовательно, получим:
J² = (Jm)² - Q²×(Jm/Qm)²,
то есть
J = Jm√1-(Q/Qm)² = 10×√1- (3/5)² = 8 мА