/
Объяснение:
Пусть векторные поля являются потенциальными:
Тогда и результирующее поле
является потенциальным, а его потенциал равен сумме потенциалов полей :
Благодаря этому свойству проблема нахождения результирующего векторного поля E сводится к проблеме суммирования скалярных величин с последующим нахождением градиента полученной функции, что существенно сокращает трудоемкость вычислений.
Пусть скалярное поле является потенциалом векторного поля A. Тогда криволинейный интеграл по дуге BC не зависит от пути интегрирования, а определяется только положением начальной и конечной точек и
Действительно,
и, следовательно,
Потенциал в произвольной точке может быть вычислен по формуле
В качестве пути интегрирования проще всего выбрать ломаную, соединяющую точки B и M, участки которой расположены параллельно координатным осям.
Следствие. Если положения начальной и конечной точек интегрирования совпадают, то интеграл по замкнутому контуру L равен нулю:
было так. Когда первобытный человек убивал медведя в неравном поединке он, конечно, радовался, если тот оказывался достаточно большим. Это обещало сытую жизнь ему и всему племени на долгое время. Но он не тащил тушу медведя на весы: в то время никаких весов не было. Не было особой нужды в измерениях и когда человек делал каменный топор: технических условий на такие топоры не существовало и все определялось размером подходящего камня, который удавалась найти. Все делалось на глаз, так, как подсказывало чутье мастера.
Позднее люди стали жить большими группами. Начался обмен товарами, перешедшими потом в торговлю, возникли первые государства. Тогда появилась нужда в измерениях. Царские песцы должны были знать, какова площадь поля у каждого крестьянина. Этим определялось, сколько зерна он должен отдать царю. Надо было измерить урожай с каждого поля, а при продаже льняного мяса, вина и других жидкостей – объем проданного товара. Когда начали строить корабли, нужно было заранее наметить правильные размеры: иначе корабль затонул бы. И уж, конечно, не могли обойтись без измерений древние строители пирамид, дворцов и храмов, до сих пор поражают нас своей соразмерностью и красотой.