М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
D3MON1
D3MON1
07.07.2020 15:29 •  Физика

Составьте и определите плотность 1 тела если его масса 100 грамм ( перевести в си )

👇
Ответ:
amina51205
amina51205
07.07.2020
S=10м2 h=5м m=100гр=0.1кг

p=m/v
V=sh=10м2*5м=50m3
P=0.1кг/50м3=0.002кг/m3
4,4(49 оценок)
Открыть все ответы
Ответ:
blaccyee0666
blaccyee0666
07.07.2020

Эксперимент по рассеиванию альфа-частиц

Открытие электрона, рентгеновского излучения и явления радиоактивности свидетельствовало о том, что представление об атоме как неделимой частице являлось неверным. К концу  XIX  века стало понятно, что атом должен иметь сложное строение. Большой вклад в изучение строения атома внёс физик-экспериментатор Эрнест Резерфорд.

В  1904  году Резерфорд начал свои эксперименты по бомбардировке альфа-частицами тонких металлических пластин (золотых и платиновых) для изучения структуры атомов, из которых состоят пластины.

Альфа-частица — ионизированный атом гелия.

Альфа-частица — это массивная (масса альфа-частицы в несколько тысяч раз больше, чем масса электрона) положительно заряженная частица. Заряд альфа-частицы в два раза больше элементарного заряда.

Схематично установка Резерфорда изображена на рисунке ниже.

В толстостенном свинцовом футляре ( 1 ) находится радиоактивное вещество ( 2 ), излучающее поток альфа-частиц. Через небольшое отверстие ( 3 ) поток альфа-частиц направляется на тонкую золотую фольгу ( 4 ) (толщиной порядка  0,1  мк). За фольгой располагается экран, покрытый сернистым цинком ( 5 ). При столкновении альфа-частицы на экране наблюдается вспышка.

 

Согласно модели строения атома по Томпсону, альфа-частицы должны столкнуться с большими плотными атомами и разлететься под разными углами. Однако опыт показал, что большинство альфа-частиц пролетают беспрепятственно через пластинку металла ( 6 ). И только небольшая часть всех альфа-частиц изменяет направление движения, отклоняясь на небольшие углы ( 7 ). А некоторые частицы и вовсе отлетают от фольги в обратном направлении ( 8 ).

 

Результаты опыта были удивительными. Только в  1911  году Резерфорд смог объяснить результаты опытов, предложив новую модель строения атома.

Ядерная модель строения атома

Так как большинство альфа-частиц свободно проходило через фольгу, это означало, что практически всё через которое проходит поток альфа-частиц — это пустота. Где же тогда «спрятана» вся масса атома? Резерфорд предположил, что практически вся масса атома сосредоточена в очень маленьком объёме — ядре атома. Было очевидно, что ядро должно быть положительно заряжено. Когда альфа-частица пролетает достаточно близко от такого ядра, то из-за Кулоновских сил отталкивания происходит отклонение от первоначального направления движения частицы. А при столкновении с ядром частица отскакивает в обратном направлении. По расчётам Резерфорда, ядро атома должно было иметь размер примерно в  3000  раз меньший, чем атом. Остальное атома должны занимать электроны.

 

Планетарная модель строения атома

 

Итак, стало понятно, что «пудинговая модель строения атома» неверна. На основе экспериментальных данных была предложена новая модель строения атома, которая получила название «планетарная модель строения атома».

Обрати внимание!

Согласно модели Резерфорда, атом состоит из очень маленького положительно заряженного ядра, размер которого в тысячи раз меньше самого атома, и электронов, которые вращаются вокруг ядра по круговым орбитам.

Модель очень напоминала модель строения Солнечной системы, где вокруг массивного Солнца по круговым орбитам вращаются планеты.

 

Таким образом, на основе планетарной модели можно было объяснить результаты опытов по рассеянию альфа — частиц. Однако объяснить стабильность атомов не удавалось. Движение электрона в атоме происходит с ускорением. В соответствии с классической электродинамикой это движение должно было сопровождаться излучением электромагнитных волн, в результате чего энергия электрона в атоме непрерывно уменьшалась бы. Электрон стал бы приближаться к ядру по спирали и должен был бы очень скоро упасть на него. Однако атомы стабильны.

4,4(51 оценок)
Ответ:
Arkadop
Arkadop
07.07.2020

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:

{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}

Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.

4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ