1. По назначению
По характеру использования
[Дементьев Б. А. Ядерные энергетические реакторы. — М.: Энергоатомиздат, 1990. — С. 21—22. — 351 с. — ISBN 5-283-03836-X];
[Бартоломей Г. Г., Бать Г. А., Байбаков В. Д., Алхутов М. С. Основы теории и методы расчёта ядерных энергетических реакторов / Под ред. Г. А. Батя. — М.: Энергоиздат, 1982. — С. 31. — 511 с.];
[Angelo, Joseph A. Nuclear technology. — USA: Greenwood Press, 2004. — P. 275—276. — 647 p. — (Sourcebooks in modern technology). — ISBN 1-57356-336-6]
ядерные реакторы делятся на:
- Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт. В отдельную группу выделяют:
-- Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения — морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.
- Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт.
- Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
- Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным относят реакторы, использующиеся для опреснения морской воды.
Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.
2. По спектру нейтронов
- Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
- Реактор на быстрых нейтронах («быстрый реактор»)
- Реактор на промежуточных нейтронах
- Реактор со смешанным спектром
3. По размещению топлива
- Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
- Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).
В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.
Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.
4. По виду топлива
По изотопу:
- изотопы урана 235U, 238U, 233U
- изотоп плутония 239Pu, также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)
- изотоп тория 232Th (посредством преобразования в 233U)
По степени обогащения:
- природный уран
- слабо обогащённый уран
- высоко обогащённый уран
По химическому составу:
- металлический U
- UO2 (диоксид урана)
- UC (карбид урана) и т.д.
Объяснение:
Задание 1
Дано:
p = 1·10⁵ Па
ρ = 1,5 кг/м³
<v> - ?
Запишем основное уравнение МКТ в виде
p = (1/3)·ρ·<vср>²
Откуда:
<vср> = √ (3·p/ρ) = √ (3·1·10⁵/1,5) ≈ 450 м/с
Задание 2
ответ: 1) Температура связана со средней кинетической энергией
молекул
Задание 3
Температура:
1) Является мерой средней кинетической энергии тел
2) Является характеристикой теплового равновесия
Задание 4
T = 273 + t
t = T - 273 = 200 - 273 = - 73°C
Задание 5
Дано:
<E> = 6·10⁻²¹ Дж
T - ?
<E> = (3/2)·k·T
T = 2·<E> / k = 2· 6·10⁻²¹ / (1,38·10⁻²³) ≈ 870 K
Задание 6
ν = 2 моль
t = - 20⁰C; T = 273+t = 273-20 = 250 K
V = 10 л = 10·10⁻³ м³
p - ?
Из уравнения Менделеева-Клапейрона
p·V = v·R·T
находим:
p = v·R·T / V = 2·8,31·250 / (10·10⁻³) ≈ 420 кПа
45 км/час=45/3,6=12,5 м/сек
2)Земля движется вокруг Солнца со средней скоростью 30 км/с.На какое расстояние Земля перемещается по своей орбите в течении часа?
1 час=3600 сек s=30*3600=108 000 км
3)Автомобиль проезжает первые 1,5 км пути за 2,5 мин, а последующие 5 км-за 5 мин.Чему равна средняя скорость автомобиля на всем пути?
vср=s/t=(1.5+5)/(1.5/2.5+5/5)=6.5/1.6=4.0625 км/мин
4) Рассчитайте, за какое время солнечный свет достигает Земли, если расстояние от Земли до Солнца составляет примерно 150 млн.км. Скорость света равна 300000 км/с.
t=150000000/300000 =500 cек= 8мин 20 сек
5) Трамвай первые 25 м двигался со скоростью 2,5 м/с, а следующие 300 м со скоростью 10 м/с. Определите среднюю скорость трамвая на всем пути.
vср=(25+300)/(25/2.5+300/10)=325/40=8.125 м/сек≈30 км/час