Допустим, комнатная температура составляет 25 градусов. Тогда Q=c*m*(t2-t1); 25'000=4'200*m*(100 - 25); m=25'000/(4'200*75); m=0.07936507936 кг. Готово!
Алгоритм следующий: 1). Найти точку (обычно это ось вращения), относительно которой мы ищем момент силы M(f). Очень важно помнить, что вращающий момент существует только если есть такая точка, почти всегда это ОСЬ вращения. 2).Продолжить вектор силы до (плюс-минус) ∞, то есть продлить прямую, которой принадлежит этот вектор, в обе стороны. 3). Опустить из оси вращения перпендикуляр на полученную прямую (часто случается, что перпендикуляр опускается непосредственно на вектор силы). 4). Длинна этого перпендикуляра — "плечо силы". обычно обозначается буквой d. 5). Произведение силы F на плечо d и есть вращающий момент или момент силы.
исходя из данных l = 0.5 м и t = 1 c можем определить начальную скорость на этом отрезке перемещения, а затем и ускорение
l = v0*t - (a t²)/2; a = - v0 / t
l = v0*t - v0*t/2
v0 = 2l / t
a = -2 l / t²
a = -2*0.5 / 1 = - 1 м/с² - это ускорение постоянно на всем участке перемещения
1) если начальная скорость равна нулю, то
S = (a t²)/2 => t = sqrt(2S/a)
t = sqrt(2*50) = 10 c
2) если начальная скорость не равна нулю, то
S = v0² / 2a => v0 = sqrt(2aS) = 10 м/с
S = v0*t - (a t²)/2,
0.5 t² - 10t + 50 = 0,
t = 10 c
2.
по закону сохранения импульса в проекции на ось, сонаправленную с движением шаров после столкновения (оно будет происходит в сторону шара с большим импульсом)
Q=c*m*(t2-t1);
25'000=4'200*m*(100 - 25);
m=25'000/(4'200*75);
m=0.07936507936 кг.
Готово!