Для начала посчитаем объемы отсеков, заполненных газом до и после переворотов, учитывая объем ртути: L1=0.6 м, L2=0.3 м После переворотов: L1'=0.54 м, L2'=0.36 м Так как площадь сосуда постоянна, а для расчетов будем использовать закон Бойля-Мэриота, то площадь сечения сосуда сократится, запишем систему из двух уравнений Бойля-Мэриота для первого и для второго отсеков: 1)0.3po=0.54p' 2)0.6po=0.36(p'+pgh) если состав трубки пребывает в спокойствии, то давление верхнего отсека равно давлению нижнего, исходя из простого равенства сил, тогда давление в нижнем отсеке равно сумме давлений верхнего отсека и столбика ртути. Разделим уравнения друг на друга и найдем таким образом p': 0.72p'=0.36pgh p'=20 400Па Тогда из первого уравнения несложно получить: po=0.54*20400/0.3=36720Па
Из-за закона сохранения импульса барон массы М, усевшись на ядро массы М ( летевшее параллельно земле со скоростью V₁ ДО встречи с Мюнхаузеном) уменьшил тем самым скорость ядра вдвое: MV₁ = 2МV₂ откуда следует V₂ = V₁/2
Если бы Мюнхаузен не прыгал на ядро, оно полетело бы дальше с прежней скоростью и упало бы на землю на дистанции вдвое большей и вошло бы в землю под тем же углом, что и в момент выстрела. Решив задачу полета ядра без барона, мы и найдём искомый угол. Итак. Высота h₀ = 150 метров. Дальность полёта L₀ = 2L₁ = 300 метров время полёта равно времени свободного падения t₀ с высоты h₀ t₀ = √(2h₀/g) Вертикальная составляющая скорости в момент приземления v₁ = gt₀ = g√(2h₀/g) = √(2h₀g) Горизонтальная составляющая скорости без барона v₂ = L₀/t₀ = L₀/√(2h₀/g) = L₀√(g/2h₀) Тангенс угла влёта (и вылета): tgα = v₁/v₂ = √(2h₀g)/(L₀√(g/2h₀) = 2h₀/L₀ tgα = 2*150/300 = 1 => α=45° Таким образом, ядро вылетело из пушки под углом 45 градусов
M=B/M0*H=0,75/12,56*10^-7*150=3,98*10^4