Поднимаясь по желобу на высоту h шарик приобретает потенциальную энергию W = mgh.
При малых смещениях можно считать, что амплитуда колебаний по дуге желоба l равна проекции этой дуги на горизонталь X0. Из прямоугольного треугольника, образованного радиусом желоба R, амплитуды горизонтального смещения X0 и проекции крайнего положения шарика на вертикаль (R-h) следует: X0^2 + (R-h)^2 = R^2 Отсюда получим: X0^2 = 2*R*h - h^2 Учитывая, что при малых колебаниях h^2 << 2*R*h X0^2 = 2*R*h
Таким образом, получаем выражение для h через амплитуду X0 при малых отклонениях от положения равновесия: h = X0^2/2R
Потенциальная энергия, максимальная при крайнем положении шарика обретает вид: W = m*g*X0^2/2R
Теперь получим значение максимальной кинетической энергии шарика (при прохождении положения равновесия). Она равна: T = m*V0^2/2 + I*Omega^2/2 поскольку, коль шарик катится по жёлобу без проскалзывания, мы должны, помимо кин энергии поступательного движения шарика массы m, учитывать ещё и энергию вращения шарика с моментом инерции I и угловой скоростью вращения шарика вокруг его собственной оси Omega.
При этом максимальная линейная скорость шарика V0 = Omega*r, где r = радиус шарика => Omega = V0/r
T = m*V0^2/2 + I*(V0/r)^2/2
Если шарик совершает гармонические колебания по закону x(t) = X0*Sin(omega*t) то его скорость должна меняться по закону v(t) = x'(t) = omega*X0*Cos(omega*t)
Таким образом, максимальная линейная скорость шарика (амплитуда скорости) равна V0 = omega*X0, где omega - циклическая частота колебаний шарика.
Выражение для максимальной кинетической энергии шарика принимает вид: T = m*(omega*X0)^2/2 + I*(omega*X0)^2/(2r^2).
Поскольку момент инерции шарика радиуса r и массы m равен I = (2/5)mr^2, то
T = m*(omega*X0)^2/2 + (2/5)mr^2*(omega*X0)^2/(2r^2) = (7/10)m*(omega*X0)^2
В колебательной системе максимальное значение потенциальной энергии W равно максимальной величине кинетической энергии T.
(7/10)m*(omega*X0)^2 = m*g*X0^2/2R отсюда, сокращая в обеих частях равенства m и X0 получаем:
(7/5)*omega^2 = g/R
и окончательно omega^2 = (5/7)*(g/R) и omega = sqrt(5g/7R).
Частота такого "маятника" niu = omega/2Pi niu = sqrt(5g/7R)/2Pi
Угол падения=углу отражения; угол между лучом падающим и зеркалом= углу между отраженным лучом и зеркалом. Угол падения = 90-80=10 (угол падения - угол между перпендикуляром, проведенным к зеркалу через точку падения и падающим лучом) Соответственно, угол между падающим и отраженным лучами = 20 градусам Тогда 20*4=80 Если угол между этими лучами будет равен восьмидесяти, то каждый из этих углов равен 40. Высчитываем угол между зеркалом и отраженным лучом: 90-40=50 Значит, угол уменьшится на 30 градусов :)
Найти:
Решение:
Потенциальная энергия определяется как
Отсюда, можем выразить высоту, на которую поднялся мяч:
ответ: 15 м.