Осевым (или экваториальным) моментом инерции сечения относительно оси называется величина, которую определяют как:
\[J_x=\int_S{y^2dS\ ; \ J_y=\int_S{x^2dS}} \qquad (1)\]
Выражение (1) обозначает, для вычисления осевого момента инерции берется по всей площади S сумма произведений бесконечно малых площадок (dS) умноженных на квадраты расстояний от них до оси вращения:
Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей (например, относительно осей X и Y в декартовой системе координат) дают полярный момент инерции (J_p) относительно точки пересечения этих осей:
\[J_x+J_y=J_p \qquad (2)\]
Объяснение:
дано анализ решение
s1-11 см f1/f2=s1/s2 f2=(500*4): 11=181,81 н
f1-500h f2=(f1*s2): s1
s2-4 см
f2-? ответ: 181,81 н
вроде так