Объяснение:
Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.
Существует функция состояния - энтропия S, которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.
Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2S < 0).
Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:
, (4.3)
где знак равенства ставится, если весь цикл полностью обратим.
Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:
, (4.4)
где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.
С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:
, (4.5)
где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.
Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:
. (4.6)
Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:
Qобр = TdS, (4.7)
где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.
Расчет изменения энтропии для различных процессов
Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:
(4.8)
Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).
1) Нагревание или охлаждение при постоянном давлении.
Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости: Qобр = Cp dT.
(4.9)
Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2: а) обратимо; б) против внешнего давления p.
по специальной договоренности с редколлегией и редакцией журнала «квант»
движению тела обычно препятствуют силы трения. если соприкасаются поверхности твердых тел, их относительному движению мешают силы сухого трения. характерной особенностью сухого трения является существование зоны застоя. тело нельзя сдвинуть с места, пока абсолютная величина внешней силы не превысит определенного значения. до этого момента между поверхностями соприкасающихся тел действует сила трения покоя, которая уравновешивает внешнюю силу и растет вместе с ней (рис. 1).
рис. 1.
максимальное значение силы трения покоя определяется формулой
где μ— коэффициент трения, зависящий от свойств соприкасающихся поверхностен; n — сила нормального давления.
когда абсолютная величина внешней силы превышает значение fтр max, возникает относительное движение — проскальзывание. сила трения скольжения обычно слабо зависит от скорости относительного движения, и при малых скоростях ее можно считать равной fтр max.
движению тела в жидкости и газе препятствуют силы жидкого трения. главное отличие жидкого трения от сухого — отсутствие зоны застоя. в жидкости или газе не возникают силы трения покоя, и поэтому даже малая внешняя сила способна вызвать движение тела. сила жидкого трения при малых скоростях пропорциональна скорости, а при больших — квадрату скорости движения.
1. при экстренной остановке поезда, двигающегося со скоростью υ = 70 км/ч. тормозной путь составил s = 100 м. чему равен коэффициент трения между колесами поезда и рельсами? каким станет тормозной путь, если откажут тормоза в одном из n = 10 вагонов? массу локомотива принять равной массе вагона; силами сопротивления воздуха пренебречь.
при торможении ускорение а поезду сообщает сила трения fтр:
где μ — масса всего состава. сила трения представляет собой равнодействующую всех сил трения, действующих на состав (рис. 2), и равна по модулю .
рис. 2.
следовательно,
и .
с другой стороны, . подставляя это значение в выражение для μ, получаем
в том случае, когда не работают тормоза у одного из вагонов, суммарная сила трения, действующая на вагоны и локомотив, равна
где m — масса одного вагона. масса всего состава равна μ = (п + 1)∙m, так что . ускорение поезда в этом случае равно
а тормозной путь равен
t= √2 * 35 / 10 = 7 c.