Объяснение: Большинство волновых процессов в оптике можно объяснить при допущения, что световые волны поперечные или продольные. Однако существуют процессы, в которых проявляются различия между поперечными и продольными волнами. К таким процессам относятся, например, отражение и преломление света на границе двух сред с различными показателями преломления, а также явление двойного лучепреломления в анизотропных средах. Для объяснения этих явлений необходимо привлекать понятие “поляризованный свет”. Свет представляет собой разновидность электромагнитных волн, и поэтому световые волны являются векторными волнами. Для всех векторных волн поляризация характеризует поведение во времени одного из векторов поля, связанного с данной волной, наблюдаемое в некоторой фиксированной точке пространства.
Световые волны имеют электромагнитную природу, так что для их полного описания требуется четыре основных полевых вектора: напряженность электрического поля, напряженность магнитного поля, индукция электрического поля и индукция магнитного поля. Из этих четырех векторов для определения состояния поляризации световых волн выбран вектор электрического поля. Такой выбор объясняется тем, что при взаимодействии света с веществом сила, действующая на электроны, с точностью до пренебрежимо малой поправки определяется именно электрическим полем световой волны. Вообще, если поведение вектора напряженности электрического поля световой волны определено, то поведение трех остальных вектров может быть найдено, так как эти вектора связаны между собой уравнениями Максвелла и материальными уравнениями. В дальнейшем будем считать, что поляризация света полностью определена изменением во времени t вектора напряженно-сти электрического поля Е(r, t), наблюдаемого в фиксированной точке пространства r.
Рассмотрим плоскую монохроматическую электромагнитную волну, которая распространяется вдоль направления z прямоугольной системы координат xyz. Волновой вектор этой световой волны k направлен вдоль z. Если в волне колебания вектора напряженности электрического поля Е происходят вдоль одной прямой (в данном случае вдоль оси х), то такая волна называется линейно-поляризованной. Пример такой линейно-поляризованной плоской монохроматической волны показан на рис. 4. Аналогично, если колебания вектора Е в плоской монохроматической волне происходят вдоль направления у, то такая волна также будет называться линейно-поляризованной. Уравнения таких волн можно записать в виде:
Ex = Exo sin (wt - kz); Ey = Eyo sin(wt - kz),
Итоговый тест по теме:
«Альдегиды и кетоны»
Часть А Выберите один правильный ответ из четырёх предложенных.
А1. К классу предельных альдегидов принадлежит вещество состава
1) СnH2n-2O 2) СnH2n+2O 3) СnH2nO 4) СnH2nO2
A2. Вещество состава С2Н4О может быть
1) многоатомным спиртом 2) альдегидом
3) кислотой 4) простым эфиром
А3. Вещество, структура которого СН3─С═СН─СН2─СН═О, называется
│
СН3
1) 2-метил-5-оксопентен-2 2) 2-метилпентен-2-аль-5
3) 5-метилгексен-4-аль 4) 4-метилпентен-3-аль
А4. Гомологом бутаналя является
1) пропаналь 2) бутанон 3) бутанол-1 4) бутан
А5. Изомером бутаналя не является
1) бутен-2-ол-1 2) бутанон
3) циклобутанол 4) диэтиловый эфир
А6. Для пропаналя характерна изомерия
1) углеродного скелета 2) геометрическая
3) межклассовая 4) оптическая
А7. Среди утверждений:
А. В карбонильной группе альдегидов электронная плотность связи смещена к атому
углерода.
Б. В молекулах альдегидов есть непрочная π-связь, −
1) верно только А 2) верно только Б 3) верны оба утверждения
4) оба утверждения неверны
А8. Температура кипения этаналя ниже, чем у этанола, потому что
1) у этанола выше молекулярная масса 2) в молекуле этанола нет непрочной π-связи
3) в молекуле этаналя меньше атомов водорода 4) между молекулами этаналя не
образуются водородные связи
А9. Число σ-связей в молекуле ацетальдегида равно
1) 2 2) 3 3) 5 4) 6
А10. Для формальдегида не характерны реакции
1) присоединения 2) замещения 3) окисления 4) восстановления
А11. При нагревании ацетальдегида со свежеосаждённым гидроксидом меди(II)
наблюдается
1) появление жёлтого, а затем красного осадка
2) превращение голубого осадка гидроксида меди(II) в чёрный
3) растворение осадка и образование голубого раствора
4) растворение осадка и образование васильково-синего раствора
А12. Образование «серебряного зеркала» в реакции с аммиачным раствором оксида
серебра доказывает, что в молекуле вещества содержится
1) карбоксильная группа 2) двойная связь между атомами С и О
3) альдегидная группа 4) атом углерода в sp2-гибридном состоянии
А13. При окислении пропаналя образуется
1) пропан 2) пропанол-1 3) пропановая кислота 4) пропанол-2
А14. С аммиачного раствора оксида серебра можно различить растворы
1) метанола и этанола 2) этанола и этаналя 3) ацетальдегида и пропаналя
4) глицерина и этиленгликоля
А15. С гидроксидом меди(II) реагируют оба вещества
1) глицерин и пропаналь 2) ацетальдегид и этанол
3) этанол и фенол 4) фенол и формальдегид
А16. При восстановлении бутаналя получается
1) бутанол-1 2) бутановая кислота 3) бутанол-2 4) дибутиловый эфир
А17. Среди утверждений:
А. Альдегиды проявляют слабые кислотные свойства.
Б. Альдегиды, в отличие от кетонов, легко окисляются, −
1) верно только А 2) верно только Б 3) верны оба утверждения
4) оба утверждения неверны
А18. В цепи превращений СН3─СН2─ОН →Х → СН3─СООН веществом Х является
1) СН≡СН 2) СН2═СН2 3) СН3─СН2Cl 4) СН3─СН═О
А19. В цепи превращений Х СН3─СН═О Y
веществами Х и Y соответственно являются
1) этилен и этанол 2) этанол и уксусная кислота
3) ацетилен и этанол 3) ацетилен и уксусная кислота
А20. Формальдегид можно получить
1) крекингом метана 2) гидратацией ацетилена
3) окислением метанола 4) гидролизом хлорметана
А21. Ацетальдегид не образуется при
1) гидратации ацетилена 2) дегидрировании уксусной кислоты
3) каталитическом окислении этилена 4) каталитическом дегидрировании этанола
А22. Гидратацией алкина может быть получен
1) формальдегид 2) ацетальдегид 3) пропионовый альдегид 4) масляный альдегид
А23. Формальдегид не используется для
1) дезинфекции 2) получения пластмасс 3) удобрения почвы
4) протравливания семян
А24. Спирт может быть получен при взаимодействии альдегида с
1) гидроксидом меди(II) 2) щёлочью
3) хлороводородом 4) водородом на катализаторе