1). Условие равновесия рычага:
F₁L₁ = F₂L₂ => F₂ = F₁L₁ : L₂ = m₁gL₁ : L₂ = 15·10·3 : 6 = 75 (H)
2). Наклонная плоскость дает выигрыш в силе во столько раз, во сколько ее длина больше высоты.
Таким образом, выигрыш в силе будет минимальным при максимальном наклоне плоскости к горизонту, то есть у второй плоскости с углом наклона 42°.
3). В том случае, если синий груз обозначен m₁, красный - m₂,
зеленый - m₃:
Условие равновесия рычага:
F₁L₁ + F₂L₂ = F₃L₃
m₁gL₁ + m₂gL₂ = m₃gL₃
m₂ = (m₃gL₃ - m₁gL₁) : gL₂ = (64·10·3 - 15·10·4) : (10·2) = 66 (кг)
4). Если грузы слева направо обозначены: m₁; m₂; m₃; m₄, то:
Условие равновесия левого рычага:
m₁gL₁ = m₂gL₂ => m₂ = m₁gL₁ : gL₂ = 80·2 : 1 = 160 (кг)
Общая масса левого рычага: m' = 80 + 160 = 240 (кг)
Условие равновесия нижнего рычага:
m'gL₁ = m''gL₂ => m'' = m'L₁ : L₂ = 240·1 : 5 = 48 (кг)
Условие равновесия правого рычага:
m₃gL₃ = m₄gL₄
Так как m₃ + m₄ = m'' = 48 (кг), то:
(48 - m₄)L₃ = m₄L₄
48 - m₄ = m₄ · 3
4m₄ = 48
m₄ = 12 (кг) m₃ = 48 - 12 = 36 (кг)
Согласно закону сложения скоростей Галилея
Скорость в неподвижной системе отсчёта ( v2 ) равно векторной сумме его скорости относительно движущейся системы отсчёта ( v1 ) и скорости движущегося системы отсчета относительно неподвижной ( v12 )
За неподвижную систему отсчёта примем Землю , а за движущиеся системы отсчета один из автомобилей тогда
v2 = v1 + v12 - в векторном виде
Ох : v2 = v1 + v12
отсюда
v1 = v2 - v12
v1 = 90 - 60 = 30 ( км/ч ) - скорость первого автомобиля относительно второго
v1' = 60 - 90 = -30 ( км/ч ) - скорость второго автомобиля относительно первого
Дано:
F - 245 кН = 245.000 Н
N - 3000 кВт = 3.000.000 Вт
s - 15 км = 15.000 м
t - ?
Решение:
N = A/t => t = Fs/N
t = 245.000Н*15.000м/3.000.000Вт = 1225 сек = 20,4 мин.
ответ: поезд проедет за 20,4 минут