Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.
Таким образом, можно сказать, что плотность не зависит от массы вещества, а зависит от массы молекул и взаимного расположения частиц, из которых состоит вещество; от объема и температуры (для газов) и от агрегатного состояния вещества.
ответ: б) от массы вещества.
Запишем формулы:
a = (V-V₀) / t (1)
S = V₀·t + a·t² / 2 (2)
Подставим (1) в (2):
S = V₀·t + (V-V₀) ·t²/ (2·t)
S = V₀·t + (V-V₀) ·t/ 2
S = V₀·t + V·t/2 - V₀ ·t/ 2
S = (2·V₀·t + V·t - V₀ ·t) / 2
S = (V₀·t + V·t) /2
или:
S = (V₀+V)·t / 2
S = ( (V₀+V)/2) · t
Получили интересную и простую формулу, которой практически не пользуются на уроке физики (а зря...)
То есть путь при равноускоренном движении равен среднеарифметическому значению начальной и конечной скорости умноженному на время.
Ускорение знать вообще не надо!