17.1. в закрытом медном колориметре массой m1 = 0,2 кг находится лед массой m2 = 1 кг при температуре −10 °с. в колориметр впускают пар массой m3 = 0,2 кг, имеющий температуру 110 °с. какая температура установится в колориметре? удельную теплоемкость паров воды в интервале от 100 до 110 °с считать равной 1,7 кдж/(кг•к). удельная теплота парообразования воды равна 2,1 мдж/кг, удельная теплота плавления льда 0,34 мдж/кг. [37 °с]
17.2. при соблюдении необходимых предосторожностей вода может быть переохлаждена до температуры −10 °с. сколько льда образуется из такой воды массой 1 кг, если в нее бросить кусочек льда и этим вызвать замерзание воды? какую температуру должна иметь переохлажденная вода, чтобы она целиком превратилась в лед? удельная теплоемкость переохлажденной воды 4,19 кдж/(кг•к), льда 2,1 кдж/(кг•к). удельная теплота плавления льда 0,33 мдж/кг. [0,12 кг; −160 °с]
17.3. в колбе находилась вода при 0 °с. выкачиванием из колбы воздуха заморозили всю воду в сосуде. какая часть воды при этом испарилась, если колба была теплоизолирована? удельная теплота испарения воды 2,5 мдж/кг. удельная теплота плавления льда 0,33 мдж/кг. [11,7 %]
17.4. в дьюаровском сосуде, содержащем жидкий азот при температуре −195 °с, за время 24 ч испаряется азот объемом 10−3м3 при температуре окружающего воздуха 20 °с. определите удельную теплоту парообразования азота, если известно, что при температуре 0 °с в том же сосуде за время 22,5 ч тает лед массой 4•10−3 кг. считать, что количество теплоты, подводимое ежесекундно к сосуду, пропорционально разности температур снаружи и внутри сосуда. плотность жидкого азота 800 кг/м3, удельная теплота плавления льда 0,33 мдж/кг. [0,019 мдж/кг]
17.5. лед массой 1 кг при температуре 0 °с заключен в теплонепроницаемый сосуд и подвергнут давлению 6,9•107 па. сколько льда расплавится, если при увеличении давления на δp = 3,8•107 па температура плавления льда понижается на 1 °с? понижение температуры плавления от 0 °с считать пропорциональным увеличению давления сверх атмосферного. [11,3 г]
17.6. некоторая установка, развивающая мощность 30 квт, охлаждается проточной водой, текущей по спиральной трубке сечением 1 см2. при установившемся режиме проточная вода нагревается на 15 °с. определите скорость воды, предполагая, что на нагревание воды идет η = 0,3 мощности, развиваемой установкой. [1,44 м/с]
17.7. санки массой 5 кг скатываются с горы, которая образует с горизонтом 30°. пройдя расстояние 50 м, санки развивают скорость 4,1 м/с. вычислите количество теплоты, выделенное при трении полозьев о снег. [1,19 кдж]
17.8. свинцовая пуля, летящая со скоростью 400 м/с, попадает в стальную плиту и отскакивает от нее со скоростью 300 м/с. какая часть пули расплавится, если ее температура в момент удара была равна 107 °с и на нагревание пули пошло η = 0,8 всей работы, совершаемой при ударе? удельная теплоемкость и удельная теплота плавления свинца равны соответственно 126 дж/(кг•к), 25 кдж/кг. [0,05]
Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.
Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.
Собственная проводимость полупроводников обычно невелика, так как число свободных электронов, например, в германии при комнатной температуре порядка 3·1013 / см3. В то же время число атомов германия в 1 см3 ~ 1023. Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.
Примесными центрами могут быть:
атомы или ионы химических элементов, внедренные в решетку полупроводника;
избыточные атомы или ионы, внедренные в междоузлия решетки;
различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.
Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.
Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).
Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As5+, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях.
Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10−19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — «дырки» не происходит и дырочная проводимость очень мала, то есть практически отсутствует. Небольшая часть собственных атомов полупроводника ионизирована, и часть тока образуется дырками, то есть донорные примеси — это примеси, поставляющие электроны проводимости без возникновения равного количества подвижных дырок. В итоге мы получаем полупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа.
В случае акцепторной примеси, например, трехвалентного индия In3+ атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает». Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.
Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называются полупроводниками р-типа.
Необходимо отметить, что введение примесей в полупроводники, как и в любых металлах, нарушает строение кристаллической решетки и затрудняет движение электронов. Однако сопротивление не увеличивается из-за того, что увеличение концентрации носителей зарядов значительно уменьшает сопротивление. Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 108 — 109 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз.
Возможность управления удельным сопротивлением благодаря введению примесей используется в полупроводниковых приборах.
Дырочная проводимость не является исключительной особенностью полупроводников. У некоторых металлов и их сплавов существует смешанная электронно-дырочная проводимость за счет перемещений некоторой части неколлективированных валентных электронов. Например, в цинке, бериллии, кадмии, сплавах меди с оловом дырочная составляющая электрического тока преобладает над электронной.
Если в полупроводник одновременно вводятся и донорные и акцепторные примеси, то характер проводимости (n- или p-тип) определяется примесью с более высокой концентрацией носителей тока — электронов или дырок.
Объяснение:
вот я думаю что так правильно