Каким стало бы ускорение свободного падения на поверхности солнца, если бы при той же массе оно увеличилось в диаметре до размеров земной орбиты? масса солнца в 333 тыс. раз больше земной, а его диаметр равен 1392000 км.
Для того, чтобы промежутки на шкале между рисками были больше, необходимо:
1. Использовать жидкость с более высоким коэффициентом объемного теплового расширения. Например, у ртути β = 18,1* 10⁻⁵ °С, а у спирта β = 108*10⁻⁵ °С То есть, при одной и той же площади поперечного сечения капилляра, одному мм при подъеме температуры на 1°С в ртутном термометре, будет соответствовать 6 мм при подъеме температуры на 1°С в спиртовом термометре.
2. Использовать в термометре капилляр с меньшей площадью поперечного сечения. Действительно, при увеличении объема на 1 мм³ и сечении капилляра 1 мм² получим перемещение края жидкости на 1 мм. Если при том же увеличении объема жидкости уменьшить сечение капилляра в 2 раза, то край жидкости переместится на 2 мм
Разобьем кубик со стороной а на 8 кубиков со сторонами а\2 и поставим начало координат в центр основного кубика, тогда положение центра масс ещё целого кубика можно записать как: r=mr1+mr2+...+mr8/8m , где r, r1, ...,r8 - радиусы векторы к центр массам соответственно основного кубика и маленьких, а m - масса маленького кубика. Причем так как длина главной диагонали основного кубика равна a*sqrt(3), то |r1|=|r2|==|r8|=a*sqrt(3)/4. Причем в этом случае r=0, так как соответсвующие вектора r1 и r8, r2 и r7 и т.д в сумме дают нулевой вектор. Теперь возьмем и уберем один из маленьких кубиков, например 8й, тогда формула примет вид: R=m*r1/7m=r1/7. |R| =a*sqrt(3)/28, остальные вектора также в сумме дадут нулевой вектор. То есть центр масс сдвинется по основной диагонали от вырезанного кубика на расстояние a*sqrt(3)/28
g = GM/R² = (6,67×10^-11×2×10^30) / 1392000² = 13,34×10^19 / 2×10^12 = 6,67×10^7 = 6,7×10^7 м/с²