Докажите, что ускорение движения крайней точки стрелки часов в два раза больше ускорения средней точки этой стрелки (то есть точки находящейся посередине между центром вращения стрелки и её концом)
Длина экватора Земли L = 2πR = 40192 (км) Оборот вокруг своей оси Земля делает за 24 часа. Следовательно, самолет должен двигаться со скоростью вращения Земли. То есть: длина экватора ≈ 40192 км. Время оборота Земли вокруг своей оси ≈ 24 ч Таким образом, скорость человека должна быть 40192/24 ≈ 1675 км/ч ≈ 1,4М (1,4 скорости звука) То есть это возможно только на истребителе с постоянной дозаправкой в воздухе. Недешевое удовольствие ...))) Кроме того Земля, помимо вращательного движения вокруг своей оси, совершает еще и поступательное движение по круговой орбите вокруг Солнца и, таким образом, человек на самолете, зафиксировав свое положение относительно солнца, тем не менее, через полгода окажется в тени Земли. Тогда для сохранения положения между землей и солнцем человек должен уменьшить скорость самолета на величину Δv = 20096/182,5 сут = 20096/4380 = = 4,59 км/ч
Треугольник рисуется обычно так, чтобы гипотенуза превосходила по длине противолежащий катет углу альфа. Отметим, что треугольники, в которых мы и проецируем силу тяжести, и начальный треугольник - подобны. В начальном треугольнике уголь альфа находится напротив маленького катета. В остальных двух подобных будет также - на основании этого у меня на рисунке выставлены углы альфа в маленьких треугольниках. Соответственно, распиши, чему равняется синус/косинус угла альфа в мелких и получишь проекцию mg. Проще - запомнить, что синус - всегда противный, косинус - всегда прилежащий. ОХ - напротив, поэтому синус, ОУ - аналогично.
можно сделать и соответствующий рисунок, а так
ускорение а=r*w;
где r- радиус-вектор (считаем основание стрелки началом координат и r есть для точки на стрелке расстоянием , конец на R, а срединная точка на R/2;
w= угловая скорость, при равномерном движении стрелки по кругу w=const;
тогда а1-ускорение конца стрелки, а а2-середины стрелки
a1/a2=(Rw)/(Rw/2)=2
что и требовалось доказать