Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так? Сила трения Fтр = N * mu = m * g * mu Ускорение (как учил старина Ньютон) а = F / m. В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения. х = ( v^2 - u^2 ) / (2a) 16 = (121 - u^2) / 6 u^2 = 25 u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента: t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
Дано: Решение. v₁ = 8 км/ч v₂ = 16 км/ч S = 48 км ========== t = ?
Четвертый идет пешком, трое едут 12 км и оставляют один велосипед. третий идет пешком, двое уезжают и едут еще 12 км (всего 24), где оставляют еще один велосипед. Второй идет пешком, первый проезжает еще 12 км (всего 36), где оставляет велосипед и идет пешком уже до базы.
Вариант предпочтительнее тем что в этом случае все четверо проходят одинаково минимальное расстояние пешком и проезжают одинаково максимальное расстояние на велосипеде. Очевидно, что в этом случае время движения всей группы до базы будет минимальным. Проверим: Четвертый, пока трое других едут 12 км за время t₁ = 12/16 = 3/4 (ч) пройдет пешком расстояние S₁ = v₁t₁ = 8 * 3/4 = 6 (км) после чего, пройдя еще 6 км за 3/4 часа сядет на оставленный третьим велосипед и поедет до базы: S₁' = S -S₁ = 48 - 12 = 36 (км) Время на это у него уйдет: t₁' = S₁'/v₂ = 36 : 16 = 2 1/4 (ч) = 2 ч 15 мин
У третьего маршрут будет выглядеть так: 12 км на велосипеде, 12 км пешком до велосипеда, оставленного вторым и 24 км на велосипеде до базы. У второго: 24 км на велосипеде, 12 км пешком до велосипеда, оставленного первым, и 12 км на велосипеде до базы. У первого: 36 км на велосипеде, 12 км пешком до базы. Средняя скорость движения каждого туриста при этом составит почти 15 км/ч:
Поскольку все четверо пройдут одинаковое расстояние пешком и проедут одинаковое расстояние на велосипеде, то общее время движения группы будет равняться времени движения одного туриста и составит: t = t₁ + t₁' = 2 * 3/4 + 2 1/4 = 3 3/4 (ч) = 3 часа 45 мин.
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так?
Сила трения Fтр = N * mu = m * g * mu
Ускорение (как учил старина Ньютон) а = F / m.
В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение
а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь
Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения.
х = ( v^2 - u^2 ) / (2a)
16 = (121 - u^2) / 6
u^2 = 25
u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента:
t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.